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1. Introduction

The management of intermodal freight
transportation systems in the United States is a
tremendously complex enterprise requiring sound
transportation planning practices, which, in turn,
depend on reliable information on local, regional,
and national freight distribution that is not readily
available today at a desirable geographic scale (TRB,
Special Report 276). This is because freight
transportation planning, especially at the
metropolitan level, needs flow data at a small
geography, say, at the county level at a minimum.
Yet, existing flow data are only available at a coarse
geographic level (e.g., state level), and more detailed
data (e.g., county level) are proprietary with
unknown quality and certainly not suitable for
freight route planning. Moreover, Metropolitan
Planning Organizations (MPOs) do not have the
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resources to undertake expensive freight data
collection efforts (TRB, Special Report 288).  There
is a need, therefore, to develop freight flow data for
small areas, that is, at the county level at a
minimum.

Small-area estimation methods have been a hot
topic in statistics in the last 10 years but they
accommodate single-area-specific or non-flow data
(e.g. population or economic surveys at a school
district, health service area, etc.).  Flows, at a
minimum, have origins and destinations, which
leads to greater complexity.  To address this issue,
we will provide a methodology for estimating small-
area freight flows, which will be then demonstrated
on publicly available freight data.  The particular
application illustrates the distribution of
international-trade freight flows within the United
States (U.S.) from ports of entry to small-area
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destinations (counties).  The methodology presented
in this paper has a sound theoretical basis and can
be adapted for use in metropolitan, statewide and
national freight planning.

We could also argue that the discussion below
may have implications for freight operations
management and supply chain management.  This
is because industry supply chains are characterized
by spatial relationships, which dictate the spatial
distribution of commodity flows (Beagan et al, 2007).
For example, the spatial organization of distribution
networks of a retailer influences the origin-
destination patterns of freight flows moving
through seaports as part of an international supply
chain.  These distribution patterns are typically
influenced by market areas, for example, locations
of distribution facilities close to customer markets.
In terms of their importance in freight demand

analysis and forecasting, these critical aspects of the
supply chain directly impact the development of
commodity flow databases, freight trip generation,
and distribution models as well as freight traffic
assignment on transportation networks.

The paper can be seen as making contributions
to the literature in several areas by: (a) expanding
the scope of gravity models to forecasting small-area
bi-directional freight flows; (b) proposing a method
to extend the statistical literature on location-specific
small-area estimation to pair-wise estimation; (c)
illustrating the inner workings of maximum
likelihood estimation of gravity model parameters
that renders the traditional heuristic approaches
unnecessary; and (d) providing a method that can
be used by planners in the United States and
internationally to better manage intermodal
transportation systems and supply chains.

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. The U.S. states of New York and Pennsylvania
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2. An Example

Consider two states in the United States (U.S.), e.g.,
New York and Pennsylvania, as seen in Figure 1.
Suppose we know the total flow of commodities in
value or weight, T, from New York to Pennsylvania.

Since there are 62 counties in New York and 67
counties in Pennsylvania, a simple-minded approach
would be to divide T by 62 and call them estimates of
flow between counties. This is too naive.
Undoubtedly, the flows are related to some measure
of population and economic activity. Call such a
measure a

i
 for the originating state and b

j
 for the

destination state – where i and j index the counties.
Then a less naive estimate of flow from i to j would
be proportional to a

i
b

j
 and the proportionality can be

made into an equality by scaling to add to the total T.
However, this too is naive. We know that flows to
more difficult to reach destinations would be less.
Thus an adjustment is needed and we can estimate
the flows to be

In expression (3), A
i
, B

j
 reflect activity at i and j and

F
ij 

reflects the difficulty of getting from i to j or of
shipping from i to j.

The gravity model has been intensively studied
and has been given a sound theoretical basis. In Sen
and Smith (1995), the model has been derived on
the basis of a very small number of axioms. Since
these axioms are few and intuitively easily believable
and also because they are shown to be both necessary
and sufficient, some (including the author) find the
theory of the gravity model more complete than the
usual theories cited for the logit model.  However,
because of the relationship between the gravity and
logit models, it is most likely that the theory behind
the gravity model can be extended to cover the logit
models – although this has not occurred so far as
we know. Unfortunately all this is not too well
known perhaps because the gravity model theory is
mathematically rather demanding.

For convenience in estimation, F
ij 

is written,
without loss of generality, as

where f
ij
 reflects the level of difficulty of shipping

from i to j and a constant of proportionality is
assumed absorbed into one of the factors. But the
expression in (1) is the gravity model as explained
below.  The discussion is akin to that given by Carol
and Bevis (see Sen and Smith, 1995).

In expression f
ij
  (1)  was used in a multiplicative

way, i.e., f
ij
 is multiplied with the other terms.

Intuitively, this is reasonable, since one would expect
that doubling activity levels  a

i
 or b

j
 would double

flows irrespective of f
ij
 , so long as it does not change.

3. The Gravity Model

A modern version of the gravity model (see Sen
and Smith, 1995) is

where N
ij
 is the flow from i to j, ε

ij
 an error term and

T
ij
 = E(N

ij 
), the expectation of N

ij 
,
 
is written as

a
i
b

j 
f
ij

(1)

N
ij 
= T

ij
 + ε

ij
(2)

T
ij
 = A

i
B

j
F

ij
(3)

F
ij = 

exp(φ
 ij 

) (4)

where φ
 ij 

= log (F
ij 

). It is even more convenient
to write

φ
 ij 

= ∑ θ
k
ck

ij
(5)

k=1

K

(6)

where θ
k 
  are parameters to be estimated and

ck
ij 
are variables measuring separation between i and

j.  From a practical standpoint, this specification also
does not lose much generality since it includes
polynomials which are known to be dense in the
space of continuously differentiable functions.  Thus
the model we will consider is

4. Freight and The Gravity Model

The gravity model has been used before for
freight flow estimation (Sen and Pruthi, 1983;
Ashtakala and Murthy (1993); Smadi and Maze,
1996; Black, 1999; Cheu et al., 2003; Metaxatos, 2004;
Matsumoto, 2007). However, most theoretical
derivations of the gravity model are confined to
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people movements.  While it is possible that these
theories can be extended to freight (Sen and Smith,
1995; Metaxatos, 2004), for the purposes of this
paper, we find the discussion above adequately
persuasive.

Note also the close connection between the
gravity model and linear programming.  If any of
the θ s in expression (6) goes to , while other terms
stay the same, Τ

ij
 becomes a linear programming

solution (Evans, 1973; Senior and Wilson, 1974;
Erlander and Stewart, 1990; Sen and Smith, 1995).
This fact also might yield a theoretical basis for the
gravity model.

Extending to freight a model originally justified
for passenger flows also creates an estimation
problem. Maximum Likelihood (ML) procedures for
estimation are based on the Poisson or multinomial
distribution. It is unlikely that freight flows, which
combine flows of coal (which move in train-loads)
and much smaller deliveries, have either kind of
distribution.  The number of deliveries might be
Poisson (although that is not clear) but the size is
something else, which would depend on origin and
destination location (e.g., consider power stations
vs. a retail outlet).  The combined distribution would
be very complex.

There are two possible simple remedies.  One is
to use least squares, which does not require
knowledge of distributions provided the Gauss-
Markov conditions are met (Sen and Srivastava,
1990, p.35). The key condition, in this context, is that
of equality of variance for which empirical
diagnostic procedures can be used and combined
with weighting.  Alternatively, we could depend on
the robustness of ML Procedures as discussed in Sen
and Smith (1995).

5. Estimation of Origin/Destination
Activity Levels

Since origin and destination activity levels,

Τ
i+ 

= ∑
j
Τ

ij 
and, Τ+ j 

= ∑
i
Τ

ij 
 respectively, are at the level

of individual origins and destinations, the current
literature on small area estimation (e.g., Rao, 2003;
Jiang and Lahiri, 2006) can be brought to bear on
them.  For example, empirical best linear unbiased
predictor (EBLUP), empirical Bayes (EB) and
hierarchical Bayes (HB) estimation and inference

methods have been extensively applied to small area
estimation.  In cases where it is not entirely clear as
to how these activity levels are defined, we could
also use more traditional multiple regression for this
purpose – a method which will help identify them,
as well as make relevant estimates.  We will report
on such methods in future papers.  In this paper, we
will focus instead on the estimation of small-area
bi-directional flows when the geography of
destination ends is refined.

6. An Application

The application presented in this paper focuses on
the estimation of (international-trade) freight flows
within the United States (U.S.) between U.S. ports
of entry and individual U.S. counties.  We have
borrowed some of the data needed from an earlier
study (Metaxatos, 2004) but the methodology below
and the results are new.

6.1. A Method for Synthesizing Small-Area
Origin-Destination Freight Flows

The methodology we are proposing for obtaining
small-area synthetic origin-destination freight flow
estimates is conceptualized in Figure 2.  The steps
of the procedure are:

Obtain for
Large of
Areas

{ Ν
ij

(L)

c
ij
(L)

Step 1

Estimate
Exogenously
for Small
Areas

{ Τ
i+

(s)

T
+j
(s)

Step 4

Obtain for
Small
Areas

c
ij
(s)

Step 3

Estimate θ
Step 2

Estimate

Step 5

Τ
ij

(s)

for small
areas
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� Step 1: Obtain origin-destination flows, Ν
ij

(L),
and separation measures, c

ij
(L)’s (e.g., distance,

time, etc.), for large (e.g., state to state) areas;

� Step 2: Estimate the impedance parameter
vector, θ, that corresponds to each separation
measure c

ij
(L), using the ML procedure presented

in Metaxatos (2004);

� Step 3: Obtain separation measures, c
ij

(s)’s, for
small areas (e.g., county to county);

� Step 4: Estimate exogenously for small areas
commodity flow origin and destination activity
levels, Τ

i+
(s) and Τ

+j
(s) , respectively; and

� Step 5: Using  θ  (from Step 2),  c
ij

(s) (from Step
3), and Τ

i+
(s) and Τ

+j
(s) (from Step 4), apply the

DSF procedure (described in Metaxatos, 2004),
a particular algorithmic implementation of an
iterative proportional fitting procedure, to
obtain small-area flow estimates, Τ

ij
(s).

Note that in Step 4 above if we exogenously
estimate origin and destination activity levels at a
small enough geographic scale (e.g., at the Traffic
Analysis Zone (TAZ) level) then the proposed
methodology can be adapted for use in metropolitan
freight route planning.  In addition, further
refinements can be achieved if we disaggregate the
freight flows by commodity type and/or industry
given data availability.

6.2 A Few Details About Solution
Procedures

For completeness of the presentation, the ML
procedure in Step 2 solves the following system of
equations:

where O
i
=T

i+
, D

j
=T

+j
 , and F

ij
 is a function of the

separation measures c
ij

k .  Upon convergence (see Sen
and Smith, 1995 for a proof of convergence), the
values of T

ij
’s are 

 
given by  T

ij
(2r)=A

i
(2r-1)B

j
(2r)F

ij 
.

To illustrate the ML procedure in equations (7)
– (9) we have a prepared a hypothetical example.
Table 1 shows a spatial distribution of freight flows
among 10 areas (A to J). Each iteration of the ML
procedure obtains a better estimate of the θ
parameter so that the estimated origin-destination
flows are similar to the observed ones according to
a chi-square-type criterion. In each iteration, for a
given θ  the DSF procedure, in equations (9) and (10),
re-balances the table to the original origin and
destination totals.

(7)

(8)

(9)

where, I and J are the origin and destination sets,
respectively.  In addition, the DSF procedure in Step
5 iterates as follows (the index r denotes the iteration
number):

(10)

(11)

TTTTTable 1.able 1.able 1.able 1.able 1.     Observed Origin-Destination Freight Flows (000’s tons)

From/
To A B C D E F G H I J

Origin
Total

A 2 25 6 66 25 65 15 3 16 12 235

B 2 14 11 50 18 37 26 4 27 9 198

C 1 8 5 21 13 21 13 8 50 6 146

D 5 9 1 247 61 23 3 0 3 15 367

E 8 15 2 276 87 40 5 1 6 22 462

F 7 29 4 218 79 76 9 3 16 25 466

G 5 59 6 143 53 152 14 3 21 21 477

H 5 62 15 162 61 159 36 7 40 30 577

I 4 35 26 123 44 89 64 11 67 22 485

J 1 8 5 21 13 20 13 8 48 6 143

Destination
40 264 81 1327 454 682 198 48 294 168 3556

Totals

Table 2 shows a re-balanced table for a given θ.
Notice that the origin and destination totals have
been preserved so that equations (7) and (8) are
satisfied.  Cell-to-cell comparisons between Tables 1
and 2 reveal that the particular θ  is not optimal yet
because there are some major differences between
the origin-destination values in the two tables (more
formally, we would obtain a non-significant chi-
square-type statistic).
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Table 3 shows origin-destination flows that have
been estimated using a near optimal θ. Visual or
more formal cell-to-cell comparisons between Tables
1 and 3 can verify the proximity of the values.
Additional improvements could be achieved by
going through the diagnostic steps that are typical
in a model-building process.  As an aside, the gravity
model in equation (3) can be seen in the context of
the log-linear family of models (McCullagh and
Nelder, 1989).  Thus all the battery of tests available
for log-linear models can be brought to bear on
gravity model estimation.

6.3 An Empirical Demonstration of the
General Methodology

In this paper, the methodology has been
adjusted to the particular application at hand as seen
in Figure 3.  The objective here is to estimate
international trade freight flows from ports of entry
to destination counties.  Therefore, in Step 4 of the
procedure above we do not need to estimate Τ

i+
(s)

because ports of entry are already refined
geographically.  Regarding estimation of Τ

+j
(s) in

Step 4, we borrowed the method developed in
Metaxatos (2004).  The method simply assigns the
total freight tonnage that comes into a state j,

, to counties in the state, based on total
employment levels (in all industries) in each county
of each state using the U.S. Census Bureau’s County
Business Patterns data (see, http://www.census.gov/
epcd/cbp/view/cbpview.html). The latter is an
annual census of all business establishments with
one or more paid employees including information
on payroll, employment and industry.  As a result,
an estimate of Τ

+j
(s) is obtained.

6.4 Data Used

The particular application in this paper requires the
availability of freight shipments from ports of entry
(origins) to destination states. We used a data set
made available to us by the Oak Ridge National
Laboratory (ORNL).  The data are from the Port

TTTTTable 2.able 2.able 2.able 2.able 2. Estimated Origin-Destination Freight Flows (000’s tons) for
a fixed θ )

From/
To

A B C D E F G H I J Origin
Total

A 2.9 33.8 5.9 67.3 20.7 56.6 18.5 3.3 18.2 7.9 235.0

B 2.1 15.1 12.9 56.9 12.7 29.7 15.6 6.3 40.1 6.7 198.0

C 1.0 12.0 8.8 32.9 8.6 23.6 12.4 5.9 37.5 3.3 146.0

D 5.5 9.4 1.9 284.2 28.5 18.5 3.2 0.7 4.3 10.9 367.0

E 6.3 17.6 2.6 203.3 139.2 40.5 5.9 1.3 6.9 38.4 462.0

F 6.5 17.9 3.1 207.4 103.1 56.9 9.8 2.1 13.3 46.0 466.0

G 4.7 39.6 5.8 149.6 46.0 173.3 18.4 3.3 21.3 14.9 477.0

H 5.7 57.1 16.0 156.5 48.2 154.6 50.4 9.1 58.1 21.5 577.0

I 4.4 51.8 17.0 142.2 37.3 102.0 53.7 9.7 52.8 14.2 485.0

J 1.0 9.7 7.1 26.7 9.6 26.3 10.1 6.5 41.8 4.3 143.0

Destination 40.0 264.0 81.0 1327.0 454.0 682.0 198.0 48.0 294.0 168.0 3556.0
Totals

TTTTTable 3.able 3.able 3.able 3.able 3. Estimated Origin-Destination Freight Flows (000’s tons) for
a near optimal θ

From/
To

A B C D E F G H I J Origin
Total

A 2.6 17.4 5.4 87.7 30.0 45.1 13.1 3.2 19.4 11.1 235.0

B 2.2 14.7 4.5 73.9 25.3 38.0 11.0 2.7 16.4 9.4 198.0

C 1.6 10.8 3.3 54.5 18.6 28.0 8.1 2.0 12.1 6.9 146.0

D 4.1 27.2 8.4 137.0 46.9 70.4 20.4 5.0 30.3 17.3 367.0

E 5.2 34.3 10.5 172.4 59.0 88.6 25.7 6.2 38.2 21.8 462.0

F 5.2 34.6 10.6 173.9 59.5 89.4 25.9 6.3 38.5 22.0 466.0

G 5.4 35.4 10.9 178.0 60.9 91.5 26.6 6.4 39.4 22.5 477.0

H 6.5 42.8 13.1 215.3 73.7 110.7 32.1 7.8 47.7 27.3 577.0

I 5.5 36.0 11.0 181.0 61.9 93.0 27.0 6.5 40.1 22.9 485.0

J 1.6 10.6 3.3 53.4 18.3 27.4 8.0 1.9 11.8 6.8 143.0

Destination
40.0 264.0 81.0 1327.0 454.0 682.0 198.0 48.0 294.0 168.0 3556.0

Totals

Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. Application of the SAE methodology for port-to-county
freight flows.
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ij
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c
ij
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c
ij
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Τ
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Import Export Reporting Service (PIERS) database.
This is a commercial database (see http://
www.piers.com/about/default.asp) prepared by the
U.S. Department of Commerce and offers statistics
on global cargo movements transiting seaports in the
U. S., Mexico and South America to companies
around the globe.  A matrix, Ν

ij
(L), between 144 origin

seaports i, and 50 destination states j with dimensions
144 x 50 was developed based on this data.  Note that
a limitation with using PIERS is that reported origins
and destinations may be billing addresses rather than
shipment points.

In identifying specific types of spatial separation
that tend to impede or enhance the likelihood of
interactions between ports of entry and destination
states, the most obvious types involves physical space
as exemplified by travel distance and travel time
which are quantifiable in terms of meaningful units
of measurement.  In this application, we used the two
(one for travel distance and one for travel time)
separation measures, c

ij
(L)‘s from each origin seaport i

to each destination state j discussed in Metaxatos
(2004). These two separation measures are matrices
with dimensions also 144 x 50.  From the same study
we also borrowed two other separation measures
(again, one for travel distance and one for travel time),
c

ij
(s)‘s from each origin seaport i to each destination

county j.  The last two matrices have dimensions 144
x 3140.

6.5 Results

In passenger transportation, a flow unit of 1
(consistent with a Poisson or multinomial
distribution assumption) would be reasonable.  In
the case of freight shipments of goods, a basic unit
of flow would appear to be a trainload (for shipments
by rail) or a truckload (for shipments by truck).  In
the absence of mode-specific information as well as
information related to the variation in modal size,
we experimented with different values and
determined an ‘optimal’ (with regard to providing
the best model fit) basic unit of flow of 100,000
pounds (50 short tons).  This is not surprising given
that the bulk of flows are long-distance shipments
that are usually performed by large trucks (currently,
the gross weight limit for a 6-axle combination truck
is 80,000 pounds (40 short tons) or rail (on a limited
scale for the particular data). Interestingly, our
results appeared to be quite insensitive to the choice

of the flow unit, largely because the flows were
inordinately large.  This is in agreement with
previous work (Sen and Pruthi, 1983).

Note that if we are interested in estimating the
impact of goods movement on the transportation
network and the environment (e.g, congestion
effects, vehicle miles (kilometers) of travel, etc.) we
would need to perform a traffic assignment.  In that
case, we would have to convert the freight flows into
truck trips using, for example, the Vehicle Inventory
and Use Survey (VIUS) produced by the Census
Bureau (U.S. Census Bureau, 2004).  In this regard,
the previous adjustment is only approximate and
can be refined using the weight classes in VIUS.
Alternative methods are also available (see, Chin
and Hwang, 2006).

The sheer size of the matrices involved in this
application called for the use of specialized routines
first demonstrated for large-scale freight forecasting
in Metaxatos (2004).  Both the ML procedure (in Step
2 of the algorithm) and the DSF procedure (in Step
5) run to a tight convergence (see Metaxatos, 2004
for details).

A square-root transformation of travel distance
and travel time adequately addressed issues with
outliers and resulted in excellent model fit as seen
in Figure 4.  More formal statistics regarding model
fit gave a Chi-square ratio value close to 1, and a
Pearson correlation coefficient between observed
and estimated cell-to-cell flows with a value of 0.89
(see Metaxatos, 2004 for details).

Figure 4. Figure 4. Figure 4. Figure 4. Figure 4. Seaport-to-state freight weight length distribution.
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Estimates of the parameters θ’’s corresponding
to travel distance and travel time separation
measures are, respectively, θ1 = 11.1227 and
θ2= -16.7447.  The unusual positive sign of the travel
distance parameter estimate is due to collinearity
between the used impedances, distance and travel
time, phenomenon that is well known to adversely
affect the sign of parameter estimates.  Dropping one
of the impedances would bias the parameter
estimates left in the model.  Given the robustness of
the maximum likelihood procedure used in
collinearity situations, all available impedance
measures were retained (see Sen and Smith, 1995,
Chapter 5).  After all, the sign of θ1 would have
changed to a negative value had we reparameterized
the model and considered instead of travel time, as
the first impedance measure, the difference between
distance and travel time (in appropriate units).

All the data items as well as the parameters are
now available for Step 5 of the small-area estimation
(SAE) procedure as follows:

� The freight flow origin activity levels for each
seaport i, from the original data since we did
not have to refine the geographic scale, i.e.,

;

� The freight flow destination activity levels, T
ij

(s),
for each county j; and

� The separation measures, c
ij

(s)‘s, for travel
distance and travel time from each port i to
each county j.

Applying the DSF procedure as described above
results in the final estimates of freight flows, T

ij
(s),

between each port i and each county j.  A test of
reasonableness of the latter estimates is developed
as follows:

� Step 1: Compute the freight flow length
distribution for seaport-to-state origin-
destination pairs using the estimated flows
T

ij
(L)‘s, and separation measures, c

ij
(L)‘s;

� Step 2: Aggregate the estimated seaport-to-
county flows, T

ij
(s), into seaport-to-state flows;

� Step 3: Compute the freight flow length
frequency distribution for seaport-to-state
origin-destination pairs using the newly
aggregated flows, and separation measures,
c

ij
(L)‘s; and

� Step 4: Compare the two distributions, either
visually or using a more formal statistical
method.

As seen in Figure 5 the two distributions are very
close.  To formally compare the two distributions we
used the exact Wilcoxon two-sample test (since the
sample size is small, the normal approximation may
not be completely accurate, and it is appropriate to
compute the exact test).  The Wilcoxon statistic (see
Agresti, 1992) equals 98.5. The one-sided exact
p-value equals 0.323, while the normal approximation
yields a one-sided p-value of 0.3276, neither of them
significant; the two distributions are practically
indistinguishable.

Figure 5.Figure 5.Figure 5.Figure 5.Figure 5. Comparison of freight weight length distributions.

7. Conclusions

The unavailability of small-scale origin-destination
freight flow data that are publicly accessible and of
proven quality continues to negatively impact the
proper management of goods movements at the
national, regional and local levels in the United
States.  This paper has presented a method to
synthesize such data at a small geographical level.
It is based on a sound theoretical basis and can be
adapted for use in freight planning and
management.  The framework presented is also
flexible enough to accommodate further
refinements, i.e., by industry type, commodity type,
etc.
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The method was demonstrated using available
international trade freight flow data and estimated
origin-destination freight flows from seaports to
counties within the United States.  A preliminary
verification of the methodology is apparently
promising. Understandably, a more robust verification
effort would have compared the port-to-county
estimated flows with actual data.  Regrettably, non-
proprietary small-scale data were not conveniently
available as of this writing.

However, the discussion above could motivate
additional research in several areas: (a) development
of origin-based and destination-based small-area
freight production and attraction models that could
improve the estimation of small-area marginal totals
used in Step 4 of the proposed procedure; (b)
development of reliability estimates for the forecasted
small-area origin-destination flows, i.e., how accurate
the resulted forecasts are; and (c) validation of the
proposed small-area methodology using survey data.
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