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ABSTRACT 

A universal challenge in solving a variety of vehicle 

routing problems (VRPs) is the exponential increase of 

computation time when the number of entities such as roads, 

vehicles, and destinations increases. This article studies a class 

of VRPs in which multiple vehicles located at different locations 

are dispatched to multiple destinations. Real time VRP in large 

road networks with time dependent travel time remains a 

challenge because computation time for the optimal vehicle 

routes and assignment increases significantly as the size of road 

networks increases. This article (a) applies a shortest path 

algorithm with arc labelling to reduce required computer 

storage space; (b) develops a revised Hungarian method to 

minimize the latest arrival time and total travel time; and (c) 

uses appropriate computer programs and tools to reduce 

computation time for optimal vehicle routing. The algorithm 

developed in this article identifies the optimal vehicle routes 

and assignment in six minutes for large and dense road 

networks. 
 
Keywords: Hungarian method, shortest path algorithm, vehicle 

routing 

1. INTRODUCTION 
In a vehicle routing problem (VRP) studied in this 

article, vehicles travel from multiple origins to destinations. 

The goal is to meet the demand (the number of vehicles) at 

destinations and minimize total travel time or the latest 

arrival time for vehicles. The VRP has been extensively 

studied since 1960s (Balas and Toth, 1985; Bräysy and 

Gendreau, 2005; Clarke and Wright, 1964; Drexl, 2012; 

Gendreau et al., 1997; Haimovich et al., 1988; Lai and Tong, 

2012; Lai et al., 2014; Laporte et al., 1987; Laporte, 2009; 

Ozsoydan and Sipahioglu, 2013). During the last decade, 

research has shifted to time-dependent vehicle routing 

problems (TDVRPs; Almoustafa et al., 2013; Ando and 

Taniguchi, 2006; Chen et al., 2006; Chen et al., 2013; 

Figliozzi, 2012; Gendreau et al., 2015; Haghani and Jung, 

2005; Ichoua et al., 2003; Kritzinger et al., 2012; Lecluyse 

et al., 2009; Maden et al., 2010; Rekersbrink et al., 2009; 

Spliet and Gabor, 2012; Van Woensel et al., 2008; Vidal et 

al., 2012). In the TDVRP, travel time between two nodes 

connected by a road is dynamic and depends on traffic. 

This article develops an efficient TDVRP algorithm for 

vehicle routing. A TDVRP algorithm comprises of two 

sequential steps. In the first step, a shortest path (a path with 

minimum travel time) between an origin where a vehicle is 

stationed and a destination is calculated. Because travel time 

is dynamic, a shortest path for each combination of vehicle, 

origin, and destination is computed. In the second step, an 

assignment problem is formulated using the shortest paths 

(vehicle routes) identified in the first step as input. The 

assignment problem is solved to determine vehicle 

assignments, i.e., which vehicles are dispatched (assigned) to 

which destinations. The goal is to minimize total travel time 

or the latest arrival time. 

This article develops a time-dependent shortest path 

algorithm with arc labeling (TDSP-ARC), which efficiently 

computes the shortest paths for the TDVRP. The TDSP-ARC 

improves the classic Dijkstra’s algorithm in two aspects. 

First, the TDSP-ARC uses dynamic travel time to calculate 

shortest paths. Secondly, the TDSP-ARC uses arc labeling to 

reduce computer storage space required for computation. 

The output of the TDSP-ARC is used in a revised Hungarian 

method to minimize both the latest arrival time and total 

travel time. This article also examines factors that affect time 

efficiency of the TDVRP algorithm and improves time 

efficiency using appropriate computer programs and tools. 

The rest of this article is organized as follows. Section 

2 reviews relevant literature. Section 3 introduces the TDSP-

ARC algorithm. Section 4 describes the revised Hungarian 

method. Section 5 examines factors affecting time efficiency 

of the TDVRP algorithm and applies computer programs and 

tools to improve time efficiency. Section 6 concludes the 

article with main results and limitations. Section 7 discusses 

applications and future research directions. All computation 

results in this article are obtained using a Windows 8 x64 

Laptop with Intel i7-4700 CPU @2.40 GHZ and 8.0 GB 

RAM. 

The main contributions of this article include: (a) the 

TDSP-ARC algorithm using dynamic travel time to calculate 

the shortest paths and arc labeling to reduce required 

computer storage space; (b) the revised Hungarian method 

using the output of the TDSP-ARC algorithm to minimize 

the latest arrival time and total travel time; (c) analyses of 

factors affecting time efficiency of the TDVRP algorithm; 

and (d) application of computer programs and tools to 

improve time efficiency of the TDVRP algorithm. 

2. BACKGROUND 
The VRP has many input parameters, including the 

number of vehicles, origins of vehicles, size and structure of 

a road network, number of destinations, location of 

destinations, and road network traffic. Numerous methods 

were introduced in recent years to solve the VRP; these 

methods stipulated various conditions for one or more  
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Table 1 Summary of Literature on Vehicle Routing 

Research Methods Articles Optimality 

Branch-and-bound Almoustafa et al., 2013; Laporte et al., 1987; Laporte et al., 1988 Optimal 

Branch-price-cut with 

metaheuristic 
Alvarez and Munari, 2017 Good feasible solutions 

Column generation Spliet and Gabor, 2012; Wilhelm, 2001 Optimal 

Dijkstra’s algorithm Kritzinger et al. (2012) Optimal 

Genetic algorithms 
Chakroborty and Mandal, 2005; Haghani and Jung, 2005; Küçükoğlu 

and Öztürk, 2014; Lai et al., 2014; Ozsoydan and Sipahioglu, 2013 
Good feasible solutions 

Heuristic algorithm Maden et al., 2010 Good feasible solutions 

Mixed integer 

programming 
Chen et al., 2006 Good feasible solutions 

Neighborhood search  Defryn and Sörensen, 2017 Good feasible solutions 

Tabu search 
Euchi and Chabchoub, 2010; Ichoua et al., 2003; Lai and Tong, 2012; 

Ozsoydan and Sipahioglu, 2013 
Good feasible solutions 

 

parameters. This article studies a class of VRPs in which 

multiple vehicles located at different locations are dispatched 

to multiple destinations with time dependent travel time. 

Table 1 is a summary of these methods and their solutions 

relevant to the class of VRPs studied in this article. One of 

the most common conditions was the upper limit for the size 

of road networks. Other conditions include static travel time 

and upper limit for the number of destinations. These 

methods become ineffective (solutions far from optimal) or 

inefficient (cannot identify a good or optimal solution within 

an acceptable amount of time) when stipulated conditions do 

not hold. To develop effective and efficient algorithms to 

solve VRPs with many parameters remains a considerable 

challenge (Vidal et al., 2014). 

Since exact methods that identify optimal vehicle 

routes and assignments were either ineffective or inefficient 

for VRPs, heuristic methods including the genetic algorithm 

(Chakroborty and Mandal, 2005; Haghani and Jung, 2005; 

Küçükoğlu and Öztürk, 2014; Lai et al., 2014), Tabu search 

(Euchi and Chabchoub, 2010; Ichoua et al., 2003; Lai and 

Tong, 2012), branch and price (Almoustafa et al., 2013), and 

column generation algorithm (Spliet and Gabor, 2012; 

Wilhelm, 2001) were studied. Ozsoydan and Sipahioglu 

(2013) compared performance of the genetic algorithm, Tabu 

search, and nearest neighborhood-based initial solution 

technique for capacitated VRP. Haghani and Jung (2005) 

presented a genetic algorithm to solve a pick-up or delivery 

VRP with soft time windows. Their study considered 

multiple vehicles with different capacities, real-time service 

requests, and dynamic travel time between destinations. 

Defryn and Sörensen (2017) developed a two-level heuristic 

algorithm to solve the clustered VRP. 

Time windows in VRPs were also studied for various 

applications such as catering firms (Küçükoğlu and Öztürk, 

2014) and multiple delivery men (Alvarez and Munari, 

2017). Ichoua et al. (2003) conducted experiments to solve 

the VRP with time-dependent travel speeds, which satisfy 

the first-in-first-out (FIFO) property, using a parallel Tabu 

search heuristic. Almoustafa et al. (2013) improved a 

branch-and-bound method to solve the asymmetric distance-

constrained VRP suggested by Laporte et al. (1987). Chen et 

al. (2006) formulated a real-time TDVRP with time windows 

as a series of mixed integer programming models and 

developed a heuristic algorithm, which included route 

construction and improvement. Spliet and Gabor (2012) 

proposed a formulation of a time window asymmetric VRP 

and developed two variants of a column generation algorithm 

to solve the linear programming relaxation of this 

formulation. Kritzinger et al. (2012) applied variable 

neighborhood search algorithm to solve the TDVRP with 

time windows. Maden et al. (2010) proposed a heuristic 

algorithm for the VRP to minimize total travel time. 

Road networks with different sizes were also studied. 

Laporte et al. (1988) examined a class of asymmetrical 

multi-depot VRPs and location-routing problems for a 

network of 80 nodes. Haghani and Jung (2005) solved the 

TDVRP for networks with 30 destinations over 30 time 

intervals. Almoustafa et al. (2013) solved an asymmetric 

distance–constrained VRP for a network of 1,000 

destinations. In summary, most previous research focused on 

developing heuristic methods for VRPs and TDVRPs. 

Effective and efficient algorithms which may be applied to 

general TDVRPs to obtain optimal vehicle routes and 

assignment were not available. Many algorithms and 

methods developed in previous research were not tested or 

validated using real-world road networks. 

3. TDSP-ARC 

Most road networks follow the FIFO principle. The 

FIFO principle specifies that if two vehicles take the same 

route from the same origin to the same destination, the 

vehicle leaving the origin earlier always arrives at the 

destination earlier. According to the FIFO principle, a 

vehicle should leave its origin or other intermediate nodes 

whenever it is ready. Waiting at any node is never beneficial 

because a vehicle that leaves later always arrives later. Under 

the FIFO principle, two optimization objectives, minimizing 

total travel time and minimizing total arrival time, become 

equivalent. Another common practice in solving the TDVRP 

is the use of time intervals. In TDVRPS, a planning period is 

a time period during which vehicles must be dispatched to 

destinations to meet the demand. The planning period is 

“discretized” into sufficiently small, equal, and consecutive 
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time intervals, 𝛿’s, 𝛿 = 1, 2, 3, … and 𝛿𝜖Δ, where Δ is the set 

of time intervals over the planning period. 

Let Α, Β, Γ represent sets of vehicles, origins, and 

destinations, respectively, in a road network. There are total 

|Α| vehicles stationed at |Β| origins at the beginning of a 

planning period. Some or all of the |Α| vehicles need to be 

dispatched to |Γ| destinations, each of which requires 𝑑𝛾 

vehicles, where 𝛾 represents a destination, 𝛾𝜖Γ. Let 𝑐𝑖,𝑗,𝑡
𝛼  be 

the cost (time) it requires for a vehicle 𝛼, 𝛼𝜖Α, to travel from 

node 𝑖 at time 𝑡 to node 𝑗. 𝑖, 𝑗 ∈ V, where V is the node set in 

the road network. Β, Γ ⊂ V. Let (𝑖, 𝑗) represent an arc that 

originates from node 𝑖 and points at node 𝑗, (𝑖, 𝑗) ∈ E, where 

E is the set of arcs in the road network. 𝑐𝑖,𝑗,𝑡
𝛼 = ∞ if (𝑖, 𝑗) ∉

E. When 𝑖 = 𝛽, 𝛽 is an origin and 𝛽𝜖Β, 𝑐𝛽,𝑗,𝑡
𝛼 = ∞ for ∀𝑗 if 

𝛼 is not ready to travel from 𝛽 at time 𝑡. Eq. (1) is a model 

whose optimal solution is the TDSP between 𝛽 and 𝛾 when 

𝛼 travels from 𝛽 at 𝑡. Depending on time 𝑡, the TDSP 

between 𝛽 and 𝛾 may be different. The optimal solution to 

Eq. (1) is time dependent. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∑ ∑ 𝑐𝑖,𝑗,𝑡
𝛼 𝑋𝑖,𝑗

𝑗𝑖

 

Subject to: 

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= 1  when 𝑖 = 𝛽 

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= −1  when 𝑖 = 𝛾  

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= 0  when 𝑖 ≠ 𝛽 and 𝑖 ≠ 𝛾 

𝑋𝑖,𝑗 = (
1 (𝑖, 𝑗) is on the path from 𝛽 to 𝛾 
0 otherwise

)  

∀𝑖, 𝑗 ∈ V      (1) 

 

The second objective of the TDVRP is to minimize 

total travel time. Let 𝑠𝛽,𝛾
𝛼  represent the optimal value to Eq. 

(1), i.e., the minimum time for 𝛼 to travel from 𝛽 and arrive 

at 𝛾. Eq. (2) models a general assignment problem (GAP) 

that determines which vehicles are dispatched to each 

demand point to meet the demand. Note that the objective of 

Eq. (2) is to minimizing total travel time, which is equivalent 

to minimizing total arrival time according to the FIFO 

principle. Both Eqs. (1) and (2) are pure integer 

programming problems. If ∑ 𝑑𝛾 = |Α||Γ|
𝛾=1 , Eq. (2) is a 

balanced transportation problem and both constrains may be 

changed to equality constraints. If ∑ 𝑑𝛾 > |Α||Γ|
𝛾=1 , Eq. (2) is 

infeasible. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      ∑  

|Α|

𝛼=1

∑ 𝑠𝛽,𝛾
𝛼 𝑌𝛼,𝛾

|Γ|

𝛾=1

 

Subject to: 

∑ 𝑌𝛼,𝛾 ≤ 1

|Γ|

𝛾=1

, ∀𝛼  

∑ 𝑌𝛼,𝛾 ≥ 𝑑𝛾 , ∀𝛾

|Α|

𝛼=1

  

𝑌𝛼,𝛾 = (
1 𝛼 travels to 𝛾
0 otherwise

)   (2) 

Traditional shortest path algorithms, e.g., the Dijkstra’s 

algorithm, use node labeling to compute shortest paths. 

These algorithms manipulate a three-dimensional matrix, 

|V| × |V| × |Δ|. Each component in the matrix is travel time 

from one node to the other when a vehicle leaves the first 

node during a time interval. These travel times are often 

obtained through field observations (Rakha et al., 2006). |V| 
is the size of the road network, i.e., the total number of nodes. 

|Δ| is the number of time intervals. For example, if the size 

of a road network increases by tenfold, the computer storage 

space required for the three-dimensional matrix increases by 

100 times. 

In TDVRPs, most roads allow two-way traffic. During 

emergencies and evacuations, one-way roads may allow 

emergency vehicles to travel in both directions. It is assumed 

that all roads allow two-way traffic in the TDVRP. The 

degree of a node is the number of roads connected to the 

node. Most real-world road networks have a mean degree 

between two and four (Barabasi, 2002; Jeong, 2003). On 

average, each node is connected to two to four roads. 

Because the total number of roads is 
|E|

2
, where |E| is the 

number of arcs in the road network, the mean degree is 
|E|

2
×2

|V|
=

|E|

|V|
. When arc labeling is used, the TDSP-ARC 

algorithm manipulates a two-dimensional matrix |E| × |Δ|. 
Each component in |E| × |Δ| is travel time along an arc when 

a vehicle begins traveling during a time interval. Travel times 

in |E| × |Δ| are the same as those in |V| × |V| × |Δ|, but are 

organized in a different format that reduces required 

computer storage space. Since 2 ≤
|E|

|V|
≤ 4, 2|V| ≤ |E| ≤

4|V|. Computer storage space required for the TDSP-ARC 

algorithm is at most 4|V| × |Δ|, which is much less than 
|V| × |V| × |Δ| required for node labeling for large road 

networks. The TDSP-ARC algorithm described below is 

used to identify the shortest paths, i.e., the earliest arrival 

times (EATs) of vehicles at destinations. The TDSP-ARC 

algorithm replaces node labeling in the Dijkstra’s algorithm 

with arc labeling without changing other parts of the 

Dijkstra’s algorithm. The TDSP-ARC algorithm is 

guaranteed to identify the time-dependent shortest paths 

between nodes. The algorithm below describes how the 

shortest path for one vehicle to arrive at a destination is 

calculated. Figure 1 expands the algorithm to identify 

multiple shortest paths in a road network. Steps 1 through 5 

in Figure 1 correspond to Steps 1 through 5 described below. 

TDSP-ARC algorithm for identifying the shortest path: 

1. Assign to every arc (𝑖, 𝑗), (𝑖, 𝑗) ∈ E, in a road network 

a value representing the arrival time of a vehicle 𝛼, 

𝛼𝜖Α, at 𝑗, 𝑖, 𝑗 ∈ V. For (𝑖, 𝑗) in which 𝑖 = 𝛽, an origin 

node where 𝛼 is stationed, set the value to a finite 

positive integer number representing the time at which 

𝛼 arrives at 𝑗. The arrival time at 𝑗 is the summation of 

time at which 𝛼 is ready to travel from 𝛽 and travel time 

from 𝛽 to 𝑗. The travel time from 𝛽 to 𝑗, 𝑐𝛽,𝑗,𝛿
𝛼 , is 

obtained from a two-dimensional matrix, |E| × |Δ|, 
which stores time-dependent travel times. For example, 

if 𝛽 = 1, 𝑗 = 2, and the time at which 𝛼 is ready to 

travel from 𝛽 is 𝛿 = 15, the travel time between nodes 

1 and 2, 𝑐1,2,15
𝛼 , is a component in the matrix identified 

by arc (1, 2) and 𝛿 = 15. Set the value to infinity for 

all other arcs (𝑖, 𝑗), (𝑖, 𝑗) ∈ E and 𝑖 ≠ 𝛽; 
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Figure 1 TDSP-ARC Algorithm for Identifying Multiple Shortest Paths 

 

2. Mark all (𝑖, 𝑗) unvisited; 

3. Identify the unvisited (𝑖, 𝑗) with the smallest value. 

Mark (𝑖, 𝑗) visited. Set the end node, i.e., the second 

node 𝑗, in (𝑖, 𝑗) as the current node. If 𝑗 is the desired 

destination 𝛾, 𝛾𝜖Γ, stop. The value set for (𝑖, 𝛾) is the 

EAT of 𝛼 travelling from 𝛽 to 𝛾; 

4. For each unvisited (𝑖, 𝑗) whose 𝑖 is the current node, 

compare the arrival time at 𝑗 and the value set for (𝑖, 𝑗). 

The arrival time at 𝑗 is the summation of time at which 

𝛼 arrives at 𝑖 and travel time from 𝑖 to 𝑗. The arrival 

time at 𝑖 is the value set for the arc marked as visited in 

Step 3. The travel time from 𝑖 to 𝑗, 𝑐𝑖,𝑗,𝛿
𝛼 , is obtained 

from the matrix |E| × |Δ|. 𝛿 is the value set for the arc 

marked as visited in Step 3; 

5. For each unvisited (𝑖, 𝑗) whose 𝑖 is the current node, set 

its value as the smaller one between the arrival time at 

𝑗 calculated in Step 4 and the value already set for (𝑖, 𝑗). 

Go to Step 3. 

4. ASSIGNMENT PROBLEM: 

REVISED HUNGARIAN 

METHOD 
After shortest paths are identified using the TDSP-ARC 

algorithm, the next step is to determine which vehicle is 

dispatched to which destination to meet the demand. This is 

a process to assign (dispatch) vehicles to destinations. 

Different assignments have different total travel time or 

latest arrival time. In a typical TDVRP, a vehicle is assigned 

to one destination but a destination may require one or more 

vehicles. Following previous definitions, there are total |Α| 
vehicles to be dispatched to |Γ| destinations, each of which 

requires 𝑑𝛾 vehicles, where 𝛾 represents a destination, 𝛾 =

1, 2, 3, … and 𝛾𝜖Γ, and 𝛼 represents a vehicle, 𝛼 = 1, 2, 3, … 

and 𝛼𝜖Α. Let total vehicle demand 𝐷 = ∑ 𝑑𝛾
|Γ|
𝛾=1 . It is 

expected that 𝐷 ≤ |Α|; otherwise the TDVRP is infeasible. 
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When the objective is to minimize total travel time for 

all vehicles, the assignment of vehicles to destinations may 

be modelled as a GAP and solved using the classic 

Hungarian method. In the GAP, a square cost matrix must be 

constructed such that each task is assigned to exactly one 

agent and each agent is assigned exactly one task (Nauss, 

2003). To model the TDVRP as the GAP using the EATs 

obtained from the TDSP-ARC algorithm, three steps must be 

followed: 

1. Construct a cost matrix |A| × |Γ|. Each component in 

|A| × |Γ| represents the EAT of a vehicle at a 

destination; 

2. If a destination 𝛾’s demand for vehicles is greater than 

one, i.e., 𝑑𝛾 > 1, duplicate the column 𝛾 for 𝑑𝛾 − 1 

times. Repeat this process for each destination 𝛾 with 

𝑑𝛾 > 1 such that the number of columns in the cost 

matrix for a destination 𝛾 is equal to 𝑑𝛾. A cost matrix 

|A| × 𝐷 is constructed at the end of this step; 

3. For |A| × 𝐷, if |A| > 𝐷, add |A| − 𝐷 dummy columns; 

each component in the dummy columns has a value of 

zero. The square cost matrix |A| × |A| is constructed. 

 

The Hungarian method may be applied to |A| × |A| to 

identify the optimal assignment of vehicles to destinations 

that minimizes total travel time. A more practical goal of the 

TDVRP, however, is to minimize the latest arrival time for 

all vehicles; this belongs to the class of bottleneck 

assignment problem (BAP; Ford and Fulkerson, 1966; 

Gross, 1959; Ravindran and Ramaswami, 1977). The same 

square matrix |A| × |A| may be used to identify the optimal 

solution for the BAP. To the best of the author’s knowledge, 

the Hungarian method was not applied in previous research 

to solve the BAP. Let 𝐸𝐴𝑇𝛼,𝛾′ be the component at the 

intersection of row 𝛼 and column 𝛾′ in the cost matrix |A| ×
|A|. 𝐸𝐴𝑇𝛼,𝛾′ is the earliest arrival time of vehicle 𝛼, 𝛼 ∈ A, 

at 𝛾′, 𝛾′ ∈ Γ′, where Γ′ is a set of destinations including all 

destinations in a road network, duplicated destinations, and 

dummy destinations. Γ ⊆ Γ′ and |A| = |Γ′|. The revised 

Hungarian method minimizes both the latest arrival time and 

total travel time.     

Revised Hungarian method: 

1. Find the smallest component in each column of the 

square cost matrix |A| × |Γ′|, 𝐸𝐴𝑇𝛾′ , where 𝐸𝐴𝑇𝛾′ =

min
𝛾′

𝐸𝐴𝑇𝛼,𝛾′; 

2. Find the largest of the smallest components, 𝐸𝐴𝑇𝑚𝑎𝑥 =
max 𝐸𝐴𝑇𝛾′; 

3. Subtract 𝐸𝐴𝑇𝑚𝑎𝑥 from all components in |A| × |Γ′|; 
4. Draw lines through rows and columns to cover all non-

positive components in |A| × |Γ′|. Each line must cover 

only one entire row or column. Use the minimum 

number of such lines to cover all non-positive 

components; 

5. Check the number of lines in Step 4. If it is equal to |A| 
or |Γ′|, go to Step 7; 

6. Subtract the smallest positive component from all 

components and go to Step 4; 

7. Replace all positive components with infinity ∞; 

8. Apply the Hungarian method to find the optimal 

solution that minimizes total travel time. 

 

 

Proof of the revised Hungarian method: 

 

The 𝐸𝐴𝑇𝛾′  calculated in Step 1 is the earliest arrival 

time at the destination 𝛾′. No vehicle arrives at 𝛾′ before 

𝐸𝐴𝑇𝛾′ . The 𝐸𝐴𝑇𝑚𝑎𝑥 is the earliest time when demand at all 

destinations is met. The minimum latest arrival time at this 

point is 𝐸𝐴𝑇𝑚𝑎𝑥. After subtracting 𝐸𝐴𝑇𝑚𝑎𝑥 from all 

components in Step 3, a non-positive component indicates 

the corresponding vehicle arrives at the destination before or 

at 𝐸𝐴𝑇𝑚𝑎𝑥. For example, a component of “0” indicates the 

corresponding vehicle arrives at the destination at 𝐸𝐴𝑇𝑚𝑎𝑥. 

For another example, a component of “-7” indicates the 

corresponding vehicle arrives at the destination at 𝐸𝐴𝑇𝑚𝑎𝑥 −
7. Non-positive components may be part of the optimal 

solution. Positive components may not be part of the optimal 

solution because a positive component indicates the 

corresponding vehicle arrives at the destination after 

𝐸𝐴𝑇𝑚𝑎𝑥. 

Steps 4 and 5 examine whether feasible solutions 

having the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist. If 

the minimum number of lines that cover all non-positive 

components is equal to |A| or |Γ′|, feasible solutions that 

have the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist. In 

other words, each vehicle may be assigned to one destination 

and each destination may be assigned one vehicle. Step 7 

assigns all positive components in |A| × |Γ′| a value of 

infinity so that they are excluded from feasible solutions to 

assure any feasible solution must have the minimum latest 

arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥. Step 8 applies the classic Hungarian 

method to minimize total travel time. Indeed, any feasible 

assignment connecting pairs of vehicles and destinations 

using the non-positive components in |A| × |Γ′| is an optimal 

solution that has the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥, 

but such optimal solutions must be identified. The classic 

Hungarian method not only finds an optimal solution but also 

minimizes total travel time, which is an extra benefit. 

If the minimum number of lines drawn in Step 4 that 

cover all non-positive components is less than |A| or |Γ′|, 
feasible solutions that have the minimum latest arrival time 

of 𝐸𝐴𝑇𝑚𝑎𝑥 do not exist. The 𝐸𝐴𝑇𝑚𝑎𝑥 must be updated 

(increased) incrementally to admit feasible solutions. Step 6 

updates 𝐸𝐴𝑇𝑚𝑎𝑥 by subtracting the smallest positive 

component from all components in |A| × |Γ′|. For example, 

if the smallest positive component is 8, the 𝐸𝐴𝑇𝑚𝑎𝑥 is 

updated as follows: 𝐸𝐴𝑇𝑚𝑎𝑥 = 𝐸𝐴𝑇𝑚𝑎𝑥 + 8. Step 6 repeats 

until the minimum number of lines drawn in Step 4 is equal 

to |A| or |Γ′|. At that time feasible solutions that have the 

minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist and Steps 7 and 

8 are performed to find the optimal assignment. 

The cost matrix |A| × |Γ′| is updated in three steps: 

Step 3, Step 6, and Step 7. Steps 3 and 6 subtract a value from 

all components in |A| × |Γ′|, which does not have any impact 

on the optimal assignment. Step 7 excludes positive 

components from any feasible solution because positive 

components are not part of an optimal assignment. The 

revised Hungarian method therefore minimizes the latest 

arrival time and total travel time. 

 

This completes the proof. 



Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing 

60                 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 

 

5. COMPUTATION TIME 

EFFICIENCY OF THE TDVRP 

ALGORITHM 
In real time transportation planning and emergence 

response, the TDVRP algorithm must be solved within a 

reasonable amount of time to support timely decision 

making. For example, in a no-notice evacuation, a large 

population must be evacuated to a safe area within a time 

period ranging from a couple of hours to days. Vehicles 

stationed at multiple yards (origins) must be dispatched 

within a planning period to various intersections and ramps 

to control traffic and facilitate evacuation. Many factors 

affect how fast the TDVRP algorithm may be executed to 

find the optimal solution. Among these factors, computer 

tools and complexity of the TDVRP play a major role in the 

computation time efficiency of the TDVRP algorithm. 

As the size of a road network increases, computation 

time of the TDVRP algorithm increases (Harwood et al., 

2013). It is expected that the density of a road network also 

affects time efficiency. A dense road network has more roads 

(arcs) and may require more computation time to find the 

shortest paths and assign vehicles to destinations. On the 

other hand, a variety of computer programs and tools may be 

used to implement the TDVRP algorithm, e.g., Visual Basic 

for Applications (VBA), Visual Basic (VB), and parallel 

computing. The next two subsections examine the impact of 

road networks and computer tools on the computation time 

efficiency of the TDVRP algorithm. 

 

5.1 Road networks and computation time 

efficiency of the TDVRP algorithm 
The objective of the experiments is to determine the 

computation time of the proposed algorithms when the size 

and density of road networks change. Four road networks in 

the City of San Francisco (Brinkhoff, 2002) are used to 

examine the computation time efficiency of the TDVRP 

algorithm. Table 2 summarizes the four networks, I, II, III, 

and IV. Two factors of a road network, Size and Density, are 

studied. Each factor has two levels: Size may be small or 

large and Density may be sparse or dense. The Size of a 

network is represented by the total number of nodes, and 

Density of a network is represented by the mean degree. 

Thirty-eight experiments are performed for each road 

network. In total, 152 experiments (= 38 x 4) are completed. 

In each experiment, the TDVRP algorithm is implemented in 

VBA to find the optimal vehicle assignments that minimize 

the latest arrival time and total travel time. Computation 

times of the algorithm are recorded in Table 3. In each 

experiment, 100 vehicles are uniformly and randomly 

stationed at origins. The number of origins is uniformly and 

randomly chosen between one and 100. There are 20 

destinations each of which requires two vehicles. Locations 

of origins and destinations are uniformly and randomly 

chosen from nodes in a road network. 

The planning period is 600 minutes with one minute 

time interval. As defined in Section 3, a planning period is a 

time period during which vehicles must be dispatched to 

destinations to meet the demand. While the planning period 

may be large, the minimum latest arrival time can be small 

(less than 30 minutes in this case) depending on the 

geographical region and traffic of the road network. A large 

planning period provides a sufficiently large solution base 

from which the minimum latest arrival time may be 

identified. 

Computation times are analyzed using SAS 9.4 (SAS 

Institute Inc., 2014). The normal probability plot of residuals 

is approximately linear, indicating residuals conform to 

normality assumption. Residual is arithmetic difference 

between actual computation time and computation time 

predicted by the regression model. The 2-way analysis of 

variance (ANOVA) procedure shows that main effects, Size 

and Density, and their interaction are significant (P-value < 

0.001). The interaction plot (Figure 2) indicates there is an 

interaction between Size and Density. When Size is large, 

Density has a substantial positive effect on computation time 

whereas when Size is small, Density has a minor positive 

effect on computation time. 

The interaction between Size and Density may partially 

attribute to the TDSP-ARC algorithm, which uses arc 

labelling to calculate shortest paths. When Size is small, the 

difference in Density does not have a significant impact on 

the number of arcs. For example, the numbers of arcs in I, a 

small and sparse road network, and II, a small and dense road 

network, are 571 and 828, respectively. Since the increase in 

the number of arcs in II compared to I is small (257 arcs), the 

computation time of the TDSP-ARC algorithm increases 

slightly. When Size is large, the difference in Density has a 

significant impact on the number of arcs. For example, the 

numbers of arcs in III, a large and sparse road network, and 

IV, a large and dense road network, are 4,375 and 6,299, 

respectively. The large increase in the number of arcs in IV 

compared to III (1,924 arcs) leads to a significant increase in 

computation time of the TDSP-ARC algorithm. Other parts 

of the TDVRP algorithm also contribute to its computation 

time and these are discussed in the next section.

 
             Table 2 Four Road Networks 

Network Total Number of Nodes Size Mean Degree Density 

I 512 Small 2.23 Sparse 

II 516 Small 3.21 Dense 

III 3,916 Large 2.23 Sparse 

IV 3,926 Large 3.21 Dense 
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Table 3 Computation Times (seconds) of the TDVRP Algorithm for the Four Road Networks Described in Table 2 

Experiment 
Network 

Experiment 
Network 

I II III IV I II III IV 

1 64 105 1,481 2,972 20 59 80 1,555 3,058 

2 58 97 1,512 2,986 21 57 78 1,552 3,108 

3 66 106 1,521 3,000 22 56 93 1,552 3,057 

4 63 87 1,515 2,963 23 63 100 1,530 3,104 

5 66 100 1,510 2,958 24 60 82 1,505 3,049 

6 52 87 1,492 2,968 25 68 69 1,529 2,966 

7 56 98 1,531 3,004 26 54 108 1,548 3,060 

8 54 95 1,493 3,023 27 55 103 1,579 3,158 

9 47 105 1,564 3,008 28 51 101 1,495 3,103 

10 45 98 1,486 2,996 29 54 102 1,587 2,959 

11 58 92 1,543 2,931 30 56 100 1,580 3,037 

12 55 169 1,477 3,162 31 48 90 1,561 3,111 

13 56 114 1,454 2,934 32 57 82 1,561 3,106 

14 55 101 1,514 2,942 33 61 106 1,638 3,154 

15 58 104 1,484 2,997 34 58 78 1,551 3,138 

16 70 100 1,463 3,017 35 56 99 1,571 3,045 

17 66 94 1,522 3,071 36 61 102 1,530 3,168 

18 50 91 1,512 2,956 37 69 90 1,525 2,916 

19 58 95 1,524 2,990 38 55 87 1,504 3,117 

 

 
Figure 2 Interaction Plot for Computation Time (Response) 
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5.2 Computer tools and computation time 

efficiency of the TDVRP algorithm 
The computation time of the TDVRP algorithm 

comprises of three parts: data processing (including reading 

data from the cost matrix, storing temporary data, and results 

output), TDSP-ARC algorithm, and revised Hungarian 

method. Three computer programs and tools, VBA, VB, and 

VB with parallel computing are used to implement the 

TDVRP algorithm for road network IV, the large and dense 

road network. The objective is to determine which computer 

tool is the most time efficient for the TDVRP algorithm. 

Table 4 shows the breakdown of the computation time of the 

TDVRP algorithm in five experiments using VBA. 

It takes a little less than an hour to execute the TDVRP 

algorithm using VBA for a large and dense road network 

with 3,926 nodes, 6,299 arcs, and a mean degree of 3.21. The 

column “Mean” in Table 4 calculates the mean computation 

time in five experiments. The data processing time is about 

4% of the total computation time. The computation time of 

the TDSP-ARC algorithm is about 91% of the total 

computation time. The computation time of the revised 

Hungarian method is about 5% of the total computation time. 

The computation time in VBA for large and dense road 

networks is too large for real time vehicle routing. Table 5 

shows the breakdown of the computation time of the TDVRP 

algorithm in five experiments using VB .NET Framework in 

Microsoft Visual Studio 2013. 

Compared to the total computation time in VBA, the 

total computation time of the TDVRP algorithm in VB 

decreases significantly; it takes a little over six minutes to 

execute the TDVRP algorithm using VB for a large and 

dense road network. The data processing time in VB is 

greater than that in VBA. VBA is embedded in Microsoft 

Excel 2013 and the cost matrix is also stored in Microsoft 

Excel 2013. The seamless integration of VBA and Microsoft 

Excel 2013 leads to a smaller data processing time in VBA. 

Both the computation times for the TDSP-ARC algorithm 

and revised Hungarian method, however, decrease 

significantly in VB. Based on the column “Mean” in Table 

5, the data processing time is about 37% of the total 

computation time. The computation time of the TDSP-ARC 

algorithm is about 62% of the total computation time. The 

computation time of the revised Hungarian method is only 

1% of the total computation time. The total computation time 

in VB is acceptable for most real time TDVRPs. 

A major development contributing to the acceleration 

and quality of algorithms for real time decision support is 

parallel computing (Ghiani et al., 2003). The TDVRP 

algorithm is implemented in VB with parallel computing. 

Table 6 shows the breakdown of the computation time of the 

TDVRP algorithm in five experiments using VB with 

parallel computing. Compared to the total computation time 

in VB, the total computation time in VB with parallel 

computing is smaller but with a larger standard deviation, 

indicating performance of parallel computing is not stable. 

The data processing time decreases significantly whereas the 

computation time of the TDSP-ARC algorithm increases in 

VB with parallel computing compared to those in VB 

without parallel computing. The computation time of the 

revised Hungarian method is almost the same in VB with or 

without parallel computing. 

Based on the column “Mean” in Table 6, the data 

processing time is about 2% of the total computation time. 

The computation time of the TDSP-ARC algorithm is about 

97% of the total computation time. The computation time of 

the revised Hungarian method is only 1% of the total 

computation time. Compared to VB without parallel 

computing, VB with parallel computing significantly 

reduces data processing time but increases the computation 

time of the TDSP-ARC algorithm; both have similar total 

computation time. Parallel computing requires a high level 

of coordination and synchronization of resources in the 

computer operating system. The overhead of using parallel 

computing is expensive (Barney, 2010). Within the TDVRP 

algorithm, the TDSP-ARC algorithm requires the most 

complex calculations, which explains why the computation 

time of the TDSP-ARC algorithm increases in VB with 

parallel computing. Figure 3 compares the mean 

computation times of the three different computer tools: 

VBA, VB, and VB with parallel computing. VB with or 

without parallel computing should be used to execute the 

TDVRP algorithm for real time vehicle routing in large road 

networks. 

 
Table 4 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VBA 

Classification of Computation Time 
Experiment 

Mean Standard Deviation 
1 2 3 4 5 

Data Processing 114 113 110 116 114 113 2 

TDSP-ARC Algorithm 2,885 2,950 2,875 2,910 2,820 2,888 48 

Revised Hungarian Method 169 170 156 163 177 167 8 

Total 3,168 3,233 3,141 3,189 3,111 3,168 46 

 
Table 5 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VB 

Classification of Computation Time 
Experiment 

Mean Standard Deviation 
1 2 3 4 5 

Data Processing 145 145 144 144 144 144 < 1 

TDSP-ARC Algorithm 238 239 242 244 238 240 3 

Revised Hungarian Method 3 2 3 3 3 3 < 1 

Total 385 386 389 390 385 387 2 
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Table 6 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VB with Parellel Computing 

Classification of Computation Time 
Experiment 

Mean Standard Deviation 
1 2 3 4 5 

Data Processing 8 7 7 8 7 7 < 1 

TDSP-ARC Algorithm 350 398 385 320 310 353 39 

Revised Hungarian Method 2 3 2 2 3 2 < 1 

Total 360 408 394 330 320 362 39 

 

 
 

Figure 3 Mean Computation Times of the TDVRP Algorithm 
 

6. CONCLUSIONS 
This article develops an improved TDVRP algorithm, 

which identifies the optimal vehicle routes and assignments 

in road networks. The TDVRP algorithm integrates the 

TDSP-ARC algorithm and a new Hungarian method, which 

is revised based on the classic Hungarian method. The 

TDVRP algorithm minimizes the latest arrival time and total 

vehicle travel time. Experiments results show that the 

TDVRP algorithm implemented in VB finds the optimal 

solution in six minutes for large and dense road networks. 

The TDVRP algorithm implemented in VB may be used for 

real time time-dependent vehicle routing. 

The TDVRP algorithm may be further validated with 

other large road networks. If the computation time is too 

large, the implementation of the algorithm in VB should be 

improved, or other programming languages can be used to 

shorten the computation time. The TDVRP algorithm 

efficiently identifies the optimal routes and assignments for 

a class of VRPs in which multiple vehicles located at 

different locations are dispatched to multiple destinations. 

For other types of VRPs, e.g., VRPs with time windows, the 

algorithm developed in this article may be customized to find 

optimal routes and assignments. 

7. FUTURE RESEARCH 
Future research may validate the TDVRP algorithm 

using other road networks and computer tools. Abundant 

data for various road networks are available online (e.g., 

Brinkhoff, 2002). The TDVRP algorithm developed in this 

article may be further tested for time efficiency using these 

road networks. Other computer tools, e.g., C++ and Java, 

may be used to improve computation time efficiency. 

Although parallel computing tested in this research does not 

have a dominant advantage, it remains an effective tool to 

improve computation time efficiency of the TDVRP 

algorithm. For example, parallel computing using multiple 

computers may be tested in future research. In addition, 

super computers may be used to test the TDVRP algorithm. 
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