
OPERATIONS AND SUPPLY CHAIN MANAGEMENT

Vol. 11, No. 2, 2018, pp. 55 - 65

ISSN 1979-3561 | EISSN 2759-9363

An Improved Efficient Algorithm for Time

Dependent Vehicle Routing

Xin Chen

Industrial Engineering

Southern Illinois University Edwardsville, Illinois, United States

Email: xchen@siue.edu

ABSTRACT

A universal challenge in solving a variety of vehicle

routing problems (VRPs) is the exponential increase of

computation time when the number of entities such as roads,

vehicles, and destinations increases. This article studies a class

of VRPs in which multiple vehicles located at different locations

are dispatched to multiple destinations. Real time VRP in large

road networks with time dependent travel time remains a

challenge because computation time for the optimal vehicle

routes and assignment increases significantly as the size of road

networks increases. This article (a) applies a shortest path

algorithm with arc labelling to reduce required computer

storage space; (b) develops a revised Hungarian method to

minimize the latest arrival time and total travel time; and (c)

uses appropriate computer programs and tools to reduce

computation time for optimal vehicle routing. The algorithm

developed in this article identifies the optimal vehicle routes

and assignment in six minutes for large and dense road

networks.

Keywords: Hungarian method, shortest path algorithm, vehicle

routing

1. INTRODUCTION
In a vehicle routing problem (VRP) studied in this

article, vehicles travel from multiple origins to destinations.

The goal is to meet the demand (the number of vehicles) at

destinations and minimize total travel time or the latest

arrival time for vehicles. The VRP has been extensively

studied since 1960s (Balas and Toth, 1985; Bräysy and

Gendreau, 2005; Clarke and Wright, 1964; Drexl, 2012;

Gendreau et al., 1997; Haimovich et al., 1988; Lai and Tong,

2012; Lai et al., 2014; Laporte et al., 1987; Laporte, 2009;

Ozsoydan and Sipahioglu, 2013). During the last decade,

research has shifted to time-dependent vehicle routing

problems (TDVRPs; Almoustafa et al., 2013; Ando and

Taniguchi, 2006; Chen et al., 2006; Chen et al., 2013;

Figliozzi, 2012; Gendreau et al., 2015; Haghani and Jung,

2005; Ichoua et al., 2003; Kritzinger et al., 2012; Lecluyse

et al., 2009; Maden et al., 2010; Rekersbrink et al., 2009;

Spliet and Gabor, 2012; Van Woensel et al., 2008; Vidal et

al., 2012). In the TDVRP, travel time between two nodes

connected by a road is dynamic and depends on traffic.

This article develops an efficient TDVRP algorithm for

vehicle routing. A TDVRP algorithm comprises of two

sequential steps. In the first step, a shortest path (a path with

minimum travel time) between an origin where a vehicle is

stationed and a destination is calculated. Because travel time

is dynamic, a shortest path for each combination of vehicle,

origin, and destination is computed. In the second step, an

assignment problem is formulated using the shortest paths

(vehicle routes) identified in the first step as input. The

assignment problem is solved to determine vehicle

assignments, i.e., which vehicles are dispatched (assigned) to

which destinations. The goal is to minimize total travel time

or the latest arrival time.

This article develops a time-dependent shortest path

algorithm with arc labeling (TDSP-ARC), which efficiently

computes the shortest paths for the TDVRP. The TDSP-ARC

improves the classic Dijkstra’s algorithm in two aspects.

First, the TDSP-ARC uses dynamic travel time to calculate

shortest paths. Secondly, the TDSP-ARC uses arc labeling to

reduce computer storage space required for computation.

The output of the TDSP-ARC is used in a revised Hungarian

method to minimize both the latest arrival time and total

travel time. This article also examines factors that affect time

efficiency of the TDVRP algorithm and improves time

efficiency using appropriate computer programs and tools.

The rest of this article is organized as follows. Section

2 reviews relevant literature. Section 3 introduces the TDSP-

ARC algorithm. Section 4 describes the revised Hungarian

method. Section 5 examines factors affecting time efficiency

of the TDVRP algorithm and applies computer programs and

tools to improve time efficiency. Section 6 concludes the

article with main results and limitations. Section 7 discusses

applications and future research directions. All computation

results in this article are obtained using a Windows 8 x64

Laptop with Intel i7-4700 CPU @2.40 GHZ and 8.0 GB

RAM.

The main contributions of this article include: (a) the

TDSP-ARC algorithm using dynamic travel time to calculate

the shortest paths and arc labeling to reduce required

computer storage space; (b) the revised Hungarian method

using the output of the TDSP-ARC algorithm to minimize

the latest arrival time and total travel time; (c) analyses of

factors affecting time efficiency of the TDVRP algorithm;

and (d) application of computer programs and tools to

improve time efficiency of the TDVRP algorithm.

2. BACKGROUND
The VRP has many input parameters, including the

number of vehicles, origins of vehicles, size and structure of

a road network, number of destinations, location of

destinations, and road network traffic. Numerous methods

were introduced in recent years to solve the VRP; these

methods stipulated various conditions for one or more

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

56 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018

Table 1 Summary of Literature on Vehicle Routing

Research Methods Articles Optimality

Branch-and-bound Almoustafa et al., 2013; Laporte et al., 1987; Laporte et al., 1988 Optimal

Branch-price-cut with

metaheuristic
Alvarez and Munari, 2017 Good feasible solutions

Column generation Spliet and Gabor, 2012; Wilhelm, 2001 Optimal

Dijkstra’s algorithm Kritzinger et al. (2012) Optimal

Genetic algorithms
Chakroborty and Mandal, 2005; Haghani and Jung, 2005; Küçükoğlu

and Öztürk, 2014; Lai et al., 2014; Ozsoydan and Sipahioglu, 2013
Good feasible solutions

Heuristic algorithm Maden et al., 2010 Good feasible solutions

Mixed integer

programming
Chen et al., 2006 Good feasible solutions

Neighborhood search Defryn and Sörensen, 2017 Good feasible solutions

Tabu search
Euchi and Chabchoub, 2010; Ichoua et al., 2003; Lai and Tong, 2012;

Ozsoydan and Sipahioglu, 2013
Good feasible solutions

parameters. This article studies a class of VRPs in which

multiple vehicles located at different locations are dispatched

to multiple destinations with time dependent travel time.

Table 1 is a summary of these methods and their solutions

relevant to the class of VRPs studied in this article. One of

the most common conditions was the upper limit for the size

of road networks. Other conditions include static travel time

and upper limit for the number of destinations. These

methods become ineffective (solutions far from optimal) or

inefficient (cannot identify a good or optimal solution within

an acceptable amount of time) when stipulated conditions do

not hold. To develop effective and efficient algorithms to

solve VRPs with many parameters remains a considerable

challenge (Vidal et al., 2014).

Since exact methods that identify optimal vehicle

routes and assignments were either ineffective or inefficient

for VRPs, heuristic methods including the genetic algorithm

(Chakroborty and Mandal, 2005; Haghani and Jung, 2005;

Küçükoğlu and Öztürk, 2014; Lai et al., 2014), Tabu search

(Euchi and Chabchoub, 2010; Ichoua et al., 2003; Lai and

Tong, 2012), branch and price (Almoustafa et al., 2013), and

column generation algorithm (Spliet and Gabor, 2012;

Wilhelm, 2001) were studied. Ozsoydan and Sipahioglu

(2013) compared performance of the genetic algorithm, Tabu

search, and nearest neighborhood-based initial solution

technique for capacitated VRP. Haghani and Jung (2005)

presented a genetic algorithm to solve a pick-up or delivery

VRP with soft time windows. Their study considered

multiple vehicles with different capacities, real-time service

requests, and dynamic travel time between destinations.

Defryn and Sörensen (2017) developed a two-level heuristic

algorithm to solve the clustered VRP.

Time windows in VRPs were also studied for various

applications such as catering firms (Küçükoğlu and Öztürk,

2014) and multiple delivery men (Alvarez and Munari,

2017). Ichoua et al. (2003) conducted experiments to solve

the VRP with time-dependent travel speeds, which satisfy

the first-in-first-out (FIFO) property, using a parallel Tabu

search heuristic. Almoustafa et al. (2013) improved a

branch-and-bound method to solve the asymmetric distance-

constrained VRP suggested by Laporte et al. (1987). Chen et

al. (2006) formulated a real-time TDVRP with time windows

as a series of mixed integer programming models and

developed a heuristic algorithm, which included route

construction and improvement. Spliet and Gabor (2012)

proposed a formulation of a time window asymmetric VRP

and developed two variants of a column generation algorithm

to solve the linear programming relaxation of this

formulation. Kritzinger et al. (2012) applied variable

neighborhood search algorithm to solve the TDVRP with

time windows. Maden et al. (2010) proposed a heuristic

algorithm for the VRP to minimize total travel time.

Road networks with different sizes were also studied.

Laporte et al. (1988) examined a class of asymmetrical

multi-depot VRPs and location-routing problems for a

network of 80 nodes. Haghani and Jung (2005) solved the

TDVRP for networks with 30 destinations over 30 time

intervals. Almoustafa et al. (2013) solved an asymmetric

distance–constrained VRP for a network of 1,000

destinations. In summary, most previous research focused on

developing heuristic methods for VRPs and TDVRPs.

Effective and efficient algorithms which may be applied to

general TDVRPs to obtain optimal vehicle routes and

assignment were not available. Many algorithms and

methods developed in previous research were not tested or

validated using real-world road networks.

3. TDSP-ARC

Most road networks follow the FIFO principle. The

FIFO principle specifies that if two vehicles take the same

route from the same origin to the same destination, the

vehicle leaving the origin earlier always arrives at the

destination earlier. According to the FIFO principle, a

vehicle should leave its origin or other intermediate nodes

whenever it is ready. Waiting at any node is never beneficial

because a vehicle that leaves later always arrives later. Under

the FIFO principle, two optimization objectives, minimizing

total travel time and minimizing total arrival time, become

equivalent. Another common practice in solving the TDVRP

is the use of time intervals. In TDVRPS, a planning period is

a time period during which vehicles must be dispatched to

destinations to meet the demand. The planning period is

“discretized” into sufficiently small, equal, and consecutive

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 57

time intervals, 𝛿’s, 𝛿 = 1, 2, 3, … and 𝛿𝜖Δ, where Δ is the set

of time intervals over the planning period.

Let Α, Β, Γ represent sets of vehicles, origins, and

destinations, respectively, in a road network. There are total

|Α| vehicles stationed at |Β| origins at the beginning of a

planning period. Some or all of the |Α| vehicles need to be

dispatched to |Γ| destinations, each of which requires 𝑑𝛾

vehicles, where 𝛾 represents a destination, 𝛾𝜖Γ. Let 𝑐𝑖,𝑗,𝑡
𝛼 be

the cost (time) it requires for a vehicle 𝛼, 𝛼𝜖Α, to travel from

node 𝑖 at time 𝑡 to node 𝑗. 𝑖, 𝑗 ∈ V, where V is the node set in

the road network. Β, Γ ⊂ V. Let (𝑖, 𝑗) represent an arc that

originates from node 𝑖 and points at node 𝑗, (𝑖, 𝑗) ∈ E, where

E is the set of arcs in the road network. 𝑐𝑖,𝑗,𝑡
𝛼 = ∞ if (𝑖, 𝑗) ∉

E. When 𝑖 = 𝛽, 𝛽 is an origin and 𝛽𝜖Β, 𝑐𝛽,𝑗,𝑡
𝛼 = ∞ for ∀𝑗 if

𝛼 is not ready to travel from 𝛽 at time 𝑡. Eq. (1) is a model

whose optimal solution is the TDSP between 𝛽 and 𝛾 when

𝛼 travels from 𝛽 at 𝑡. Depending on time 𝑡, the TDSP

between 𝛽 and 𝛾 may be different. The optimal solution to

Eq. (1) is time dependent.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖,𝑗,𝑡
𝛼 𝑋𝑖,𝑗

𝑗𝑖

Subject to:

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= 1 when 𝑖 = 𝛽

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= −1 when 𝑖 = 𝛾

∑ 𝑋𝑖,𝑗

𝑗

− ∑ 𝑋𝑗,𝑖

𝑗

= 0 when 𝑖 ≠ 𝛽 and 𝑖 ≠ 𝛾

𝑋𝑖,𝑗 = (
1 (𝑖, 𝑗) is on the path from 𝛽 to 𝛾
0 otherwise

)

∀𝑖, 𝑗 ∈ V (1)

The second objective of the TDVRP is to minimize

total travel time. Let 𝑠𝛽,𝛾
𝛼 represent the optimal value to Eq.

(1), i.e., the minimum time for 𝛼 to travel from 𝛽 and arrive

at 𝛾. Eq. (2) models a general assignment problem (GAP)

that determines which vehicles are dispatched to each

demand point to meet the demand. Note that the objective of

Eq. (2) is to minimizing total travel time, which is equivalent

to minimizing total arrival time according to the FIFO

principle. Both Eqs. (1) and (2) are pure integer

programming problems. If ∑ 𝑑𝛾 = |Α||Γ|
𝛾=1 , Eq. (2) is a

balanced transportation problem and both constrains may be

changed to equality constraints. If ∑ 𝑑𝛾 > |Α||Γ|
𝛾=1 , Eq. (2) is

infeasible.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑

|Α|

𝛼=1

∑ 𝑠𝛽,𝛾
𝛼 𝑌𝛼,𝛾

|Γ|

𝛾=1

Subject to:

∑ 𝑌𝛼,𝛾 ≤ 1

|Γ|

𝛾=1

, ∀𝛼

∑ 𝑌𝛼,𝛾 ≥ 𝑑𝛾 , ∀𝛾

|Α|

𝛼=1

𝑌𝛼,𝛾 = (
1 𝛼 travels to 𝛾
0 otherwise

) (2)

Traditional shortest path algorithms, e.g., the Dijkstra’s

algorithm, use node labeling to compute shortest paths.

These algorithms manipulate a three-dimensional matrix,

|V| × |V| × |Δ|. Each component in the matrix is travel time

from one node to the other when a vehicle leaves the first

node during a time interval. These travel times are often

obtained through field observations (Rakha et al., 2006). |V|
is the size of the road network, i.e., the total number of nodes.

|Δ| is the number of time intervals. For example, if the size

of a road network increases by tenfold, the computer storage

space required for the three-dimensional matrix increases by

100 times.

In TDVRPs, most roads allow two-way traffic. During

emergencies and evacuations, one-way roads may allow

emergency vehicles to travel in both directions. It is assumed

that all roads allow two-way traffic in the TDVRP. The

degree of a node is the number of roads connected to the

node. Most real-world road networks have a mean degree

between two and four (Barabasi, 2002; Jeong, 2003). On

average, each node is connected to two to four roads.

Because the total number of roads is
|E|

2
, where |E| is the

number of arcs in the road network, the mean degree is
|E|

2
×2

|V|
=

|E|

|V|
. When arc labeling is used, the TDSP-ARC

algorithm manipulates a two-dimensional matrix |E| × |Δ|.
Each component in |E| × |Δ| is travel time along an arc when

a vehicle begins traveling during a time interval. Travel times

in |E| × |Δ| are the same as those in |V| × |V| × |Δ|, but are

organized in a different format that reduces required

computer storage space. Since 2 ≤
|E|

|V|
≤ 4, 2|V| ≤ |E| ≤

4|V|. Computer storage space required for the TDSP-ARC

algorithm is at most 4|V| × |Δ|, which is much less than
|V| × |V| × |Δ| required for node labeling for large road

networks. The TDSP-ARC algorithm described below is

used to identify the shortest paths, i.e., the earliest arrival

times (EATs) of vehicles at destinations. The TDSP-ARC

algorithm replaces node labeling in the Dijkstra’s algorithm

with arc labeling without changing other parts of the

Dijkstra’s algorithm. The TDSP-ARC algorithm is

guaranteed to identify the time-dependent shortest paths

between nodes. The algorithm below describes how the

shortest path for one vehicle to arrive at a destination is

calculated. Figure 1 expands the algorithm to identify

multiple shortest paths in a road network. Steps 1 through 5

in Figure 1 correspond to Steps 1 through 5 described below.

TDSP-ARC algorithm for identifying the shortest path:

1. Assign to every arc (𝑖, 𝑗), (𝑖, 𝑗) ∈ E, in a road network

a value representing the arrival time of a vehicle 𝛼,

𝛼𝜖Α, at 𝑗, 𝑖, 𝑗 ∈ V. For (𝑖, 𝑗) in which 𝑖 = 𝛽, an origin

node where 𝛼 is stationed, set the value to a finite

positive integer number representing the time at which

𝛼 arrives at 𝑗. The arrival time at 𝑗 is the summation of

time at which 𝛼 is ready to travel from 𝛽 and travel time

from 𝛽 to 𝑗. The travel time from 𝛽 to 𝑗, 𝑐𝛽,𝑗,𝛿
𝛼 , is

obtained from a two-dimensional matrix, |E| × |Δ|,
which stores time-dependent travel times. For example,

if 𝛽 = 1, 𝑗 = 2, and the time at which 𝛼 is ready to

travel from 𝛽 is 𝛿 = 15, the travel time between nodes

1 and 2, 𝑐1,2,15
𝛼 , is a component in the matrix identified

by arc (1, 2) and 𝛿 = 15. Set the value to infinity for

all other arcs (𝑖, 𝑗), (𝑖, 𝑗) ∈ E and 𝑖 ≠ 𝛽;

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

58 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018

Figure 1 TDSP-ARC Algorithm for Identifying Multiple Shortest Paths

2. Mark all (𝑖, 𝑗) unvisited;

3. Identify the unvisited (𝑖, 𝑗) with the smallest value.

Mark (𝑖, 𝑗) visited. Set the end node, i.e., the second

node 𝑗, in (𝑖, 𝑗) as the current node. If 𝑗 is the desired

destination 𝛾, 𝛾𝜖Γ, stop. The value set for (𝑖, 𝛾) is the

EAT of 𝛼 travelling from 𝛽 to 𝛾;

4. For each unvisited (𝑖, 𝑗) whose 𝑖 is the current node,

compare the arrival time at 𝑗 and the value set for (𝑖, 𝑗).

The arrival time at 𝑗 is the summation of time at which

𝛼 arrives at 𝑖 and travel time from 𝑖 to 𝑗. The arrival

time at 𝑖 is the value set for the arc marked as visited in

Step 3. The travel time from 𝑖 to 𝑗, 𝑐𝑖,𝑗,𝛿
𝛼 , is obtained

from the matrix |E| × |Δ|. 𝛿 is the value set for the arc

marked as visited in Step 3;

5. For each unvisited (𝑖, 𝑗) whose 𝑖 is the current node, set

its value as the smaller one between the arrival time at

𝑗 calculated in Step 4 and the value already set for (𝑖, 𝑗).

Go to Step 3.

4. ASSIGNMENT PROBLEM:

REVISED HUNGARIAN

METHOD
After shortest paths are identified using the TDSP-ARC

algorithm, the next step is to determine which vehicle is

dispatched to which destination to meet the demand. This is

a process to assign (dispatch) vehicles to destinations.

Different assignments have different total travel time or

latest arrival time. In a typical TDVRP, a vehicle is assigned

to one destination but a destination may require one or more

vehicles. Following previous definitions, there are total |Α|
vehicles to be dispatched to |Γ| destinations, each of which

requires 𝑑𝛾 vehicles, where 𝛾 represents a destination, 𝛾 =

1, 2, 3, … and 𝛾𝜖Γ, and 𝛼 represents a vehicle, 𝛼 = 1, 2, 3, …

and 𝛼𝜖Α. Let total vehicle demand 𝐷 = ∑ 𝑑𝛾
|Γ|
𝛾=1 . It is

expected that 𝐷 ≤ |Α|; otherwise the TDVRP is infeasible.

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 59

When the objective is to minimize total travel time for

all vehicles, the assignment of vehicles to destinations may

be modelled as a GAP and solved using the classic

Hungarian method. In the GAP, a square cost matrix must be

constructed such that each task is assigned to exactly one

agent and each agent is assigned exactly one task (Nauss,

2003). To model the TDVRP as the GAP using the EATs

obtained from the TDSP-ARC algorithm, three steps must be

followed:

1. Construct a cost matrix |A| × |Γ|. Each component in

|A| × |Γ| represents the EAT of a vehicle at a

destination;

2. If a destination 𝛾’s demand for vehicles is greater than

one, i.e., 𝑑𝛾 > 1, duplicate the column 𝛾 for 𝑑𝛾 − 1

times. Repeat this process for each destination 𝛾 with

𝑑𝛾 > 1 such that the number of columns in the cost

matrix for a destination 𝛾 is equal to 𝑑𝛾. A cost matrix

|A| × 𝐷 is constructed at the end of this step;

3. For |A| × 𝐷, if |A| > 𝐷, add |A| − 𝐷 dummy columns;

each component in the dummy columns has a value of

zero. The square cost matrix |A| × |A| is constructed.

The Hungarian method may be applied to |A| × |A| to

identify the optimal assignment of vehicles to destinations

that minimizes total travel time. A more practical goal of the

TDVRP, however, is to minimize the latest arrival time for

all vehicles; this belongs to the class of bottleneck

assignment problem (BAP; Ford and Fulkerson, 1966;

Gross, 1959; Ravindran and Ramaswami, 1977). The same

square matrix |A| × |A| may be used to identify the optimal

solution for the BAP. To the best of the author’s knowledge,

the Hungarian method was not applied in previous research

to solve the BAP. Let 𝐸𝐴𝑇𝛼,𝛾′ be the component at the

intersection of row 𝛼 and column 𝛾′ in the cost matrix |A| ×
|A|. 𝐸𝐴𝑇𝛼,𝛾′ is the earliest arrival time of vehicle 𝛼, 𝛼 ∈ A,

at 𝛾′, 𝛾′ ∈ Γ′, where Γ′ is a set of destinations including all

destinations in a road network, duplicated destinations, and

dummy destinations. Γ ⊆ Γ′ and |A| = |Γ′|. The revised

Hungarian method minimizes both the latest arrival time and

total travel time.

Revised Hungarian method:

1. Find the smallest component in each column of the

square cost matrix |A| × |Γ′|, 𝐸𝐴𝑇𝛾′ , where 𝐸𝐴𝑇𝛾′ =

min
𝛾′

𝐸𝐴𝑇𝛼,𝛾′;

2. Find the largest of the smallest components, 𝐸𝐴𝑇𝑚𝑎𝑥 =
max 𝐸𝐴𝑇𝛾′;

3. Subtract 𝐸𝐴𝑇𝑚𝑎𝑥 from all components in |A| × |Γ′|;
4. Draw lines through rows and columns to cover all non-

positive components in |A| × |Γ′|. Each line must cover

only one entire row or column. Use the minimum

number of such lines to cover all non-positive

components;

5. Check the number of lines in Step 4. If it is equal to |A|
or |Γ′|, go to Step 7;

6. Subtract the smallest positive component from all

components and go to Step 4;

7. Replace all positive components with infinity ∞;

8. Apply the Hungarian method to find the optimal

solution that minimizes total travel time.

Proof of the revised Hungarian method:

The 𝐸𝐴𝑇𝛾′ calculated in Step 1 is the earliest arrival

time at the destination 𝛾′. No vehicle arrives at 𝛾′ before

𝐸𝐴𝑇𝛾′ . The 𝐸𝐴𝑇𝑚𝑎𝑥 is the earliest time when demand at all

destinations is met. The minimum latest arrival time at this

point is 𝐸𝐴𝑇𝑚𝑎𝑥. After subtracting 𝐸𝐴𝑇𝑚𝑎𝑥 from all

components in Step 3, a non-positive component indicates

the corresponding vehicle arrives at the destination before or

at 𝐸𝐴𝑇𝑚𝑎𝑥. For example, a component of “0” indicates the

corresponding vehicle arrives at the destination at 𝐸𝐴𝑇𝑚𝑎𝑥.

For another example, a component of “-7” indicates the

corresponding vehicle arrives at the destination at 𝐸𝐴𝑇𝑚𝑎𝑥 −
7. Non-positive components may be part of the optimal

solution. Positive components may not be part of the optimal

solution because a positive component indicates the

corresponding vehicle arrives at the destination after

𝐸𝐴𝑇𝑚𝑎𝑥.

Steps 4 and 5 examine whether feasible solutions

having the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist. If

the minimum number of lines that cover all non-positive

components is equal to |A| or |Γ′|, feasible solutions that

have the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist. In

other words, each vehicle may be assigned to one destination

and each destination may be assigned one vehicle. Step 7

assigns all positive components in |A| × |Γ′| a value of

infinity so that they are excluded from feasible solutions to

assure any feasible solution must have the minimum latest

arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥. Step 8 applies the classic Hungarian

method to minimize total travel time. Indeed, any feasible

assignment connecting pairs of vehicles and destinations

using the non-positive components in |A| × |Γ′| is an optimal

solution that has the minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥,

but such optimal solutions must be identified. The classic

Hungarian method not only finds an optimal solution but also

minimizes total travel time, which is an extra benefit.

If the minimum number of lines drawn in Step 4 that

cover all non-positive components is less than |A| or |Γ′|,
feasible solutions that have the minimum latest arrival time

of 𝐸𝐴𝑇𝑚𝑎𝑥 do not exist. The 𝐸𝐴𝑇𝑚𝑎𝑥 must be updated

(increased) incrementally to admit feasible solutions. Step 6

updates 𝐸𝐴𝑇𝑚𝑎𝑥 by subtracting the smallest positive

component from all components in |A| × |Γ′|. For example,

if the smallest positive component is 8, the 𝐸𝐴𝑇𝑚𝑎𝑥 is

updated as follows: 𝐸𝐴𝑇𝑚𝑎𝑥 = 𝐸𝐴𝑇𝑚𝑎𝑥 + 8. Step 6 repeats

until the minimum number of lines drawn in Step 4 is equal

to |A| or |Γ′|. At that time feasible solutions that have the

minimum latest arrival time of 𝐸𝐴𝑇𝑚𝑎𝑥 exist and Steps 7 and

8 are performed to find the optimal assignment.

The cost matrix |A| × |Γ′| is updated in three steps:

Step 3, Step 6, and Step 7. Steps 3 and 6 subtract a value from

all components in |A| × |Γ′|, which does not have any impact

on the optimal assignment. Step 7 excludes positive

components from any feasible solution because positive

components are not part of an optimal assignment. The

revised Hungarian method therefore minimizes the latest

arrival time and total travel time.

This completes the proof.

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

60 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018

5. COMPUTATION TIME

EFFICIENCY OF THE TDVRP

ALGORITHM
In real time transportation planning and emergence

response, the TDVRP algorithm must be solved within a

reasonable amount of time to support timely decision

making. For example, in a no-notice evacuation, a large

population must be evacuated to a safe area within a time

period ranging from a couple of hours to days. Vehicles

stationed at multiple yards (origins) must be dispatched

within a planning period to various intersections and ramps

to control traffic and facilitate evacuation. Many factors

affect how fast the TDVRP algorithm may be executed to

find the optimal solution. Among these factors, computer

tools and complexity of the TDVRP play a major role in the

computation time efficiency of the TDVRP algorithm.

As the size of a road network increases, computation

time of the TDVRP algorithm increases (Harwood et al.,

2013). It is expected that the density of a road network also

affects time efficiency. A dense road network has more roads

(arcs) and may require more computation time to find the

shortest paths and assign vehicles to destinations. On the

other hand, a variety of computer programs and tools may be

used to implement the TDVRP algorithm, e.g., Visual Basic

for Applications (VBA), Visual Basic (VB), and parallel

computing. The next two subsections examine the impact of

road networks and computer tools on the computation time

efficiency of the TDVRP algorithm.

5.1 Road networks and computation time

efficiency of the TDVRP algorithm
The objective of the experiments is to determine the

computation time of the proposed algorithms when the size

and density of road networks change. Four road networks in

the City of San Francisco (Brinkhoff, 2002) are used to

examine the computation time efficiency of the TDVRP

algorithm. Table 2 summarizes the four networks, I, II, III,

and IV. Two factors of a road network, Size and Density, are

studied. Each factor has two levels: Size may be small or

large and Density may be sparse or dense. The Size of a

network is represented by the total number of nodes, and

Density of a network is represented by the mean degree.

Thirty-eight experiments are performed for each road

network. In total, 152 experiments (= 38 x 4) are completed.

In each experiment, the TDVRP algorithm is implemented in

VBA to find the optimal vehicle assignments that minimize

the latest arrival time and total travel time. Computation

times of the algorithm are recorded in Table 3. In each

experiment, 100 vehicles are uniformly and randomly

stationed at origins. The number of origins is uniformly and

randomly chosen between one and 100. There are 20

destinations each of which requires two vehicles. Locations

of origins and destinations are uniformly and randomly

chosen from nodes in a road network.

The planning period is 600 minutes with one minute

time interval. As defined in Section 3, a planning period is a

time period during which vehicles must be dispatched to

destinations to meet the demand. While the planning period

may be large, the minimum latest arrival time can be small

(less than 30 minutes in this case) depending on the

geographical region and traffic of the road network. A large

planning period provides a sufficiently large solution base

from which the minimum latest arrival time may be

identified.

Computation times are analyzed using SAS 9.4 (SAS

Institute Inc., 2014). The normal probability plot of residuals

is approximately linear, indicating residuals conform to

normality assumption. Residual is arithmetic difference

between actual computation time and computation time

predicted by the regression model. The 2-way analysis of

variance (ANOVA) procedure shows that main effects, Size

and Density, and their interaction are significant (P-value <

0.001). The interaction plot (Figure 2) indicates there is an

interaction between Size and Density. When Size is large,

Density has a substantial positive effect on computation time

whereas when Size is small, Density has a minor positive

effect on computation time.

The interaction between Size and Density may partially

attribute to the TDSP-ARC algorithm, which uses arc

labelling to calculate shortest paths. When Size is small, the

difference in Density does not have a significant impact on

the number of arcs. For example, the numbers of arcs in I, a

small and sparse road network, and II, a small and dense road

network, are 571 and 828, respectively. Since the increase in

the number of arcs in II compared to I is small (257 arcs), the

computation time of the TDSP-ARC algorithm increases

slightly. When Size is large, the difference in Density has a

significant impact on the number of arcs. For example, the

numbers of arcs in III, a large and sparse road network, and

IV, a large and dense road network, are 4,375 and 6,299,

respectively. The large increase in the number of arcs in IV

compared to III (1,924 arcs) leads to a significant increase in

computation time of the TDSP-ARC algorithm. Other parts

of the TDVRP algorithm also contribute to its computation

time and these are discussed in the next section.

 Table 2 Four Road Networks

Network Total Number of Nodes Size Mean Degree Density

I 512 Small 2.23 Sparse

II 516 Small 3.21 Dense

III 3,916 Large 2.23 Sparse

IV 3,926 Large 3.21 Dense

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 61

Table 3 Computation Times (seconds) of the TDVRP Algorithm for the Four Road Networks Described in Table 2

Experiment
Network

Experiment
Network

I II III IV I II III IV

1 64 105 1,481 2,972 20 59 80 1,555 3,058

2 58 97 1,512 2,986 21 57 78 1,552 3,108

3 66 106 1,521 3,000 22 56 93 1,552 3,057

4 63 87 1,515 2,963 23 63 100 1,530 3,104

5 66 100 1,510 2,958 24 60 82 1,505 3,049

6 52 87 1,492 2,968 25 68 69 1,529 2,966

7 56 98 1,531 3,004 26 54 108 1,548 3,060

8 54 95 1,493 3,023 27 55 103 1,579 3,158

9 47 105 1,564 3,008 28 51 101 1,495 3,103

10 45 98 1,486 2,996 29 54 102 1,587 2,959

11 58 92 1,543 2,931 30 56 100 1,580 3,037

12 55 169 1,477 3,162 31 48 90 1,561 3,111

13 56 114 1,454 2,934 32 57 82 1,561 3,106

14 55 101 1,514 2,942 33 61 106 1,638 3,154

15 58 104 1,484 2,997 34 58 78 1,551 3,138

16 70 100 1,463 3,017 35 56 99 1,571 3,045

17 66 94 1,522 3,071 36 61 102 1,530 3,168

18 50 91 1,512 2,956 37 69 90 1,525 2,916

19 58 95 1,524 2,990 38 55 87 1,504 3,117

Figure 2 Interaction Plot for Computation Time (Response)

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

62 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018

5.2 Computer tools and computation time

efficiency of the TDVRP algorithm
The computation time of the TDVRP algorithm

comprises of three parts: data processing (including reading

data from the cost matrix, storing temporary data, and results

output), TDSP-ARC algorithm, and revised Hungarian

method. Three computer programs and tools, VBA, VB, and

VB with parallel computing are used to implement the

TDVRP algorithm for road network IV, the large and dense

road network. The objective is to determine which computer

tool is the most time efficient for the TDVRP algorithm.

Table 4 shows the breakdown of the computation time of the

TDVRP algorithm in five experiments using VBA.

It takes a little less than an hour to execute the TDVRP

algorithm using VBA for a large and dense road network

with 3,926 nodes, 6,299 arcs, and a mean degree of 3.21. The

column “Mean” in Table 4 calculates the mean computation

time in five experiments. The data processing time is about

4% of the total computation time. The computation time of

the TDSP-ARC algorithm is about 91% of the total

computation time. The computation time of the revised

Hungarian method is about 5% of the total computation time.

The computation time in VBA for large and dense road

networks is too large for real time vehicle routing. Table 5

shows the breakdown of the computation time of the TDVRP

algorithm in five experiments using VB .NET Framework in

Microsoft Visual Studio 2013.

Compared to the total computation time in VBA, the

total computation time of the TDVRP algorithm in VB

decreases significantly; it takes a little over six minutes to

execute the TDVRP algorithm using VB for a large and

dense road network. The data processing time in VB is

greater than that in VBA. VBA is embedded in Microsoft

Excel 2013 and the cost matrix is also stored in Microsoft

Excel 2013. The seamless integration of VBA and Microsoft

Excel 2013 leads to a smaller data processing time in VBA.

Both the computation times for the TDSP-ARC algorithm

and revised Hungarian method, however, decrease

significantly in VB. Based on the column “Mean” in Table

5, the data processing time is about 37% of the total

computation time. The computation time of the TDSP-ARC

algorithm is about 62% of the total computation time. The

computation time of the revised Hungarian method is only

1% of the total computation time. The total computation time

in VB is acceptable for most real time TDVRPs.

A major development contributing to the acceleration

and quality of algorithms for real time decision support is

parallel computing (Ghiani et al., 2003). The TDVRP

algorithm is implemented in VB with parallel computing.

Table 6 shows the breakdown of the computation time of the

TDVRP algorithm in five experiments using VB with

parallel computing. Compared to the total computation time

in VB, the total computation time in VB with parallel

computing is smaller but with a larger standard deviation,

indicating performance of parallel computing is not stable.

The data processing time decreases significantly whereas the

computation time of the TDSP-ARC algorithm increases in

VB with parallel computing compared to those in VB

without parallel computing. The computation time of the

revised Hungarian method is almost the same in VB with or

without parallel computing.

Based on the column “Mean” in Table 6, the data

processing time is about 2% of the total computation time.

The computation time of the TDSP-ARC algorithm is about

97% of the total computation time. The computation time of

the revised Hungarian method is only 1% of the total

computation time. Compared to VB without parallel

computing, VB with parallel computing significantly

reduces data processing time but increases the computation

time of the TDSP-ARC algorithm; both have similar total

computation time. Parallel computing requires a high level

of coordination and synchronization of resources in the

computer operating system. The overhead of using parallel

computing is expensive (Barney, 2010). Within the TDVRP

algorithm, the TDSP-ARC algorithm requires the most

complex calculations, which explains why the computation

time of the TDSP-ARC algorithm increases in VB with

parallel computing. Figure 3 compares the mean

computation times of the three different computer tools:

VBA, VB, and VB with parallel computing. VB with or

without parallel computing should be used to execute the

TDVRP algorithm for real time vehicle routing in large road

networks.

Table 4 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VBA

Classification of Computation Time
Experiment

Mean Standard Deviation
1 2 3 4 5

Data Processing 114 113 110 116 114 113 2

TDSP-ARC Algorithm 2,885 2,950 2,875 2,910 2,820 2,888 48

Revised Hungarian Method 169 170 156 163 177 167 8

Total 3,168 3,233 3,141 3,189 3,111 3,168 46

Table 5 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VB

Classification of Computation Time
Experiment

Mean Standard Deviation
1 2 3 4 5

Data Processing 145 145 144 144 144 144 < 1

TDSP-ARC Algorithm 238 239 242 244 238 240 3

Revised Hungarian Method 3 2 3 3 3 3 < 1

Total 385 386 389 390 385 387 2

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 63

Table 6 Computation Time Breakdown (seconds) for the TDVRP Algorithm Implemented in VB with Parellel Computing

Classification of Computation Time
Experiment

Mean Standard Deviation
1 2 3 4 5

Data Processing 8 7 7 8 7 7 < 1

TDSP-ARC Algorithm 350 398 385 320 310 353 39

Revised Hungarian Method 2 3 2 2 3 2 < 1

Total 360 408 394 330 320 362 39

Figure 3 Mean Computation Times of the TDVRP Algorithm

6. CONCLUSIONS
This article develops an improved TDVRP algorithm,

which identifies the optimal vehicle routes and assignments

in road networks. The TDVRP algorithm integrates the

TDSP-ARC algorithm and a new Hungarian method, which

is revised based on the classic Hungarian method. The

TDVRP algorithm minimizes the latest arrival time and total

vehicle travel time. Experiments results show that the

TDVRP algorithm implemented in VB finds the optimal

solution in six minutes for large and dense road networks.

The TDVRP algorithm implemented in VB may be used for

real time time-dependent vehicle routing.

The TDVRP algorithm may be further validated with

other large road networks. If the computation time is too

large, the implementation of the algorithm in VB should be

improved, or other programming languages can be used to

shorten the computation time. The TDVRP algorithm

efficiently identifies the optimal routes and assignments for

a class of VRPs in which multiple vehicles located at

different locations are dispatched to multiple destinations.

For other types of VRPs, e.g., VRPs with time windows, the

algorithm developed in this article may be customized to find

optimal routes and assignments.

7. FUTURE RESEARCH
Future research may validate the TDVRP algorithm

using other road networks and computer tools. Abundant

data for various road networks are available online (e.g.,

Brinkhoff, 2002). The TDVRP algorithm developed in this

article may be further tested for time efficiency using these

road networks. Other computer tools, e.g., C++ and Java,

may be used to improve computation time efficiency.

Although parallel computing tested in this research does not

have a dominant advantage, it remains an effective tool to

improve computation time efficiency of the TDVRP

algorithm. For example, parallel computing using multiple

computers may be tested in future research. In addition,

super computers may be used to test the TDVRP algorithm.

ACKNOWLEDGEMENTS
The author would like to thank Zhu Zhang for

conducting the experiments and helping prepare this article

with the support of the Southern Illinois University

Edwardsville Research Grants for Graduate Students.

REFERENCES
Almoustafa, S., Hanafi, S., and Mladenović, N. (2013). New exact

method for large asymmetric distance-constrained vehicle

routing problem. European Journal of Operational Research

226 (3), pp. 386 - 394.

Ando, N., and Taniguchi, E. (2006). Travel time reliability in

vehicle routing and scheduling with time windows. Networks

and Spatial Economics 6 (3-4), pp. 293 - 311.

Alvarez, A., and Munari, P. (2017). An exact hybrid method for the

vehicle routing problem with time windows and multiple

deliverymen. Computers and Operations Research 83, pp. 1

- 12.

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

64 Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018

Balas, E., and Toth, P. (1985). Branch and bound methods. The

traveling salesman problem, Lawer et al. (Eds.), John Wiley

& Sons, Chichester, pp. 361 - 401.

Barabasi, A. L. (2002), Linked: The New Science of Networks,

Perseus Publishing, Cambridge, Massachusetts.

Barney, B. (2010), Introduction to parallel computing, Lawrence

Livermore National Laboratory.

Bräysy, O., and Gendreau, M. (2005). Vehicle routing problem with

time windows, Part I: Route construction and local search

algorithms. Transportation Science 39 (1), pp. 104 - 139.

Brinkhoff, T. (2002). A framework for generating network-based

moving objects. GeoInformatica 6 (2), pp. 153 - 180.

Chakroborty, P., and Mandal, A. (2005). An asexual genetic

algorithm for the general single vehicle routing problem.

Engineering Optimization 37 (1), pp. 1 - 27.

Chen, H. K., Hsueh, C. F., and Chang, M. S. (2006). The real-time

time-dependent vehicle routing problem. Transportation

Research Part E: Logistics and Transportation Review 42

(5), pp. 383 - 408.

Chen, B. Y., Lam, W. H. K., Sumalee, A., Li, Q, Shao, H., and Fang,

Z. (2013). Finding reliable shortest paths in road networks

under uncertainty. Networks and Spatial Economics 13, pp.

123 - 148.

Clarke, G., and Wright, J. V. (1964). Scheduling of vehicles from a

central depot to a number of delivery points. Operations

Research 12 (4), pp. 568 - 581.

Defryn, C., & Sörensen, K. (2017). A fast two-level variable

neighborhood search for the clustered vehicle routing

problem. Computers & Operations Research, 83, pp. 78-94.

Drexl, M. (2012). Rich vehicle routing in theory and practice.

Logistics Research 5, pp. 47 - 63.

Euchi, J., and Chabchoub, H. (2010). A hybrid tabu search to solve

the heterogeneous fixed vehicle routing problem. Logistics

Research 2, pp. 3 - 11.

Figliozzi, M. (2012). The time dependent vehicle routing problem

with time windows: Benchmark problems, an efficient

solution algorithm, and solution characteristics.

Transportation Research Part E: Logistics and

Transportation Review 48 (3), pp. 616 - 636.

Ford, L. R. Jr., and Fulkerson, D. R. (1966), Flows in Networks,

Princeton University Press, Princeton, New Jersey.

Gendreau, M., Laporte, G., and Yelle, S. (1997). Efficient routing

of service vehicles. Engineering Optimization 28 (4), pp. 263

- 271.

Gendreau, M., Ghiani, G., and Guerriero, E. (2015). Time-

dependent routing problems: A review. Computers &

Operations Research 64, pp. 189 - 197.

Ghiani, G., Guerriero, F., Laporte, G., and Musmanno, R. (2003).

Real-time vehicle routing: Solution concepts, algorithms and

parallel computing strategies. European Journal of

Operational Research 151 (1), pp. 1 - 11.

Gross, O. (1959). The bottleneck assignment problem. Proceedings

of the RAND Symposium on Mathematical Programming

(Linear Programming and Extensions), P-1630.

Haghani, A., and Jung, S. (2005). A dynamic vehicle routing

problem with time-dependent travel times. Computers &

Operations Research 32 (11), pp. 2959 - 2986.

Haimovich, M., Rinnooy Kan, A. H. G., and Stougie, L. (1988).

Analysis of heuristic routing problems. Vehicle routing:

Methods and Studies, Golden et al. (Eds.), North Holland,

Amsterdam, pp. 47 - 61.

Harwood, K., Mumford, C., and Eglese, R. (2013). Investigating

the use of metaheuristics for solving single vehicle routing

problems with time-varying traversal costs. Journal of the

Operational Research Society 64 (1), pp. 34 - 47.

Ichoua, S., Gendreau, M., and Potvin, J. Y. (2003). Vehicle

dispatching with time-dependent travel times. European

Journal of Operational Research 144 (2), pp. 379 - 396.

Jeong, H. (2003). Complex scale-free networks. Physica A:

Statistical Mechanics and Its Applications 321, pp. 226 - 237.

Kritzinger, S., Doerner, K. F., Hartl, R. F., Kiechle, G. Ÿ., Stadler,

H., and Manohar, S. S. (2012). Using traffic information for

time-dependent vehicle routing. Procedia - Social and

Behavioral Sciences 39, pp. 217 - 229.

Küçükoğlu, İ., and Öztürk, N. (2014). A differential evolution

approach for the vehicle routing problem with backhauls and

time windows. Journal of Advanced Transportation 48 (8),

pp. 942 - 956.

Lai, M., and Tong, X. (2012). A metaheuristic method for vehicle

routing problem based on improved ant colony optimization

and Tabu search. Journal of Industrial and Management

Optimization 8 (2), pp. 469 - 484.

Lai, M., Yang, H., Yang, S., Zhao, J., and Xu, Y. (2014). Cyber-

physical logistics system-based vehicle routing optimization.

Journal of Industrial and Management Optimization 10 (3),

pp. 701 - 715.

Laporte, G., Nobert, Y., and Taillefer, S. (1987). A branch-and-

bound algorithm for the asymmetrical distance-constrained

vehicle routing problem. Mathematical Modelling 9 (12), pp.

857 - 868.

Laporte, G., Nobert, Y., and Taillefer, S. (1988). Solving a family

of multi-depot vehicle routing and location-routing problems.

Transportation Science 22 (3), pp. 161 - 172.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation

Science 43, pp. 408 - 416.

Lecluyse, C., Van Woensel, T., and Peremans, H. (2009). Vehicle

routing with stochastic time-dependent travel times. 4OR-Q

Journal of Operations Research 7 (4), pp. 363 - 377.

Maden, W., Eglese, R., and Black, D. (2010). Vehicle routing and

scheduling with time-varying data: A case study. Journal of

the Operational Research Society 61 (3), pp. 515 - 522.

Nauss, R. M. (2003). Solving the generalized assignment problem:

An optimizing and heuristic approach. INFORMS Journal on

Computing 15 (3), pp. 249 - 266.

Ozsoydan, F. B., and Sipahioglu, A. (2013). Heuristic solution

approaches for the cumulative capacitated vehicle routing

problem. Optimization: A Journal of Mathematical

Programming and Operations Research 62 (10), pp. 1321 -

1340.

Rakha, H., El-Shawarby, I., Arafeh, M., and Dion, F. (2006).

Estimating path travel time reliability. Proceedings of 2006

IEEE Intelligent Transportation Systems Conference,

Toronto, Canada, pp. 236 - 241.

Ravindran, A., and Ramaswami, V. (1977). On the bottleneck

assignment problem. Journal of Optimization Theory and

Applications 21 (4), pp. 451 - 458.

Rekersbrink, H., Makuschewitz, T., and Scholz-Reiter, B. (2009).

A distributed routing concept for vehicle routing problems.

Logistics Research 1, pp. 45 - 52.

SAS Institute Inc. (2014), SAS 9.4.

Spliet, R., and Gabor, A. F. (2012). The time window assignment

vehicle routing problem. Erasmus School of Economics

(ESE), No. EI 2012-07, pp. 1 - 19.

Van Woensel, T., Kerbache, L., Peremans, H., and Vandaele, N.

(2008). Vehicle routing with dynamic travel times: A

queueing approach. European Journal of Operational

Research 186 (3), pp. 990 - 1007.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W.

(2012). A hybrid genetic algorithm for multidepot and

periodic vehicle routing problems. Operations Research 60

(3), pp. 611 - 624.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2014). A

unified solution framework for multi-attribute vehicle routing

problems. European Journal of Operational Research 234

(3), pp. 658 - 673.

Wilhelm, W. E. (2001). A technical review of column generation in

integer programming. Optimization and Engineering 2 (2),

pp. 159 - 200.

Chen: An Improved Efficient Algorithm for Time Dependent Vehicle Routing

Operations and Supply Chain Management 11(2) pp. 55 - 65 © 2018 65

Xin Chen, Ph.D., is an Associate Professor of Industrial Engineering at Southern Illinois University Edwardsville. His

research focuses on network- and knowledge-centric collaborative control with applications in air and airport traffic control,

critical infrastructure protection, energy distribution, social networks, and supply chains. He received a B.S. in Mechanical

Engineering from Shanghai Jiao Tong University, an M.S. and a Ph.D. in Industrial Engineering from Purdue University.

