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ABSTRACT 
This research studies the effects of preventive 

maintenance and replacement activities on operational costs, 

overall reliability, and availability of a multi-tasking 

manufacturing machine. A multi-objective optimization model 

to find Pareto-optimal preventive maintenance and 

replacement schedules for a repairable multi-component 

machine with increasing failure rate is developed. The planning 

horizon is divided into equally-sized periods in which minimal 

repairs, full replacement, or do-nothing actions can be 

performed on each machine’s component. The machine 

reliability for preventive maintenance aspects, its availability 

for production purposes, and total operational costs for both 

preventive maintenance and manufacturing planning are 

formulated as the objective functions and the multi-objective 

model is solved using a simulation-based optimization 

algorithm in real case study. It is shown that the developed 

mathematical models and the solution method can effectively 

generate Pareto-optimal preventive maintenance schedules that 

can be integrated into aggregate production plans. 
 
Keywords: preventive maintenance, manufacturing machines, 

multi-objective optimization, simulation-based optimization 

1. INTRODUCTION 
Recent technological complexity of modern 

manufacturing machines has increased the level of inherent 

interdependencies between production plans and 

maintenance operations in these systems. In order to keep up 

with the current competitions in global markets, many 

manufacturing industries have developed highly automated 

production systems with computerized and sophisticated 

equipment. In order to be economically viable, these modern 

and expensive systems must be operated to their highest level 

of production capacity. When an unplanned unavailability 

caused by a manufacturing machine failure or even a planned 

downtime to perform necessary maintenance actions occur it 

affects the machine’s availability and reduces the overall 

system’s productivity. As a result, the original production 

plans become obsolete. Production plan modifications are 

usually time consuming and very expensive and often cause 

increased variability in output quality as well as in service 

level. Therefore, it is very important to integrate production 

plans and preventive maintenance schedules so that these 

plans get aligned to reduce the likelihood of the unexpected 

failures as well as the need for re-planning modifications. 

In most manufacturing companies, production 

processes are fully integrated and a failure of one of the 

machines may halt the entire process to complete shutdown 

resulting to delays with significant technical and economic 

consequences. As such, significant productivity loss and 

additional costs including poor product quality, production 

overtimes, and customer dissatisfactions are expected if an 

integrated production system is not properly maintained. 

Like any other multi-component system when a production 

system is operating regularly, its various components are 

subject to degradations due either age or usage or both. Some 

of these degradations can be modeled or approximated by 

well-known stochastic processes models that can be used to 

optimally integrate production and preventive maintenance 

plans. In practice however, production and maintenance are 

usually planned independently. 

Production planning models try to optimize the costs of 

setting up and operating the system including production and 

inventories costs. Maintenance scheduling models, on the 

other hand, is aimed to find costs and benefits trade-offs of 

implementing appropriate maintenance plans in order to 

optimize the performance of the production system. As such, 

preventive maintenance plans are closely related to 

production planning in manufacturing systems. In 

manufacturing setting, preventive maintenance activities are 

planned to implement maintenance or restoration of 

equipment to a specific state guaranteeing a desired service 

level. Production planning and preventive maintenance 

operations often conflict with each other because 

maintenance actions are generally considered as secondary 

thoughts in manufacturing systems in which the production 

is the core business function. 

Different aspects of integrating production planning 

and preventive maintenance in repairable manufacturing 

systems have been extensively addressed in the literature. 

However, it is frequently tackled at the operational level 

(e.g., the production and maintenance scheduling) (Assid et 

al., 2015). Because the complexity of the problem highly 

depends on number of machines or components, majority of 

the studies have based their modeling approach on single-

machine production maintenance scheduling (Sortrakul et 

al., 2005; Aggoune and Portmann, 2006; Sortrakul and 

Cassady, 2007; Yildirim and Nezami, 2014; Zhao et al., 

2014; Bouslah et al., 2016a; Bouslah et al., 2016b, Emami-

Mehrgani et al., 2016; Kang and Subramaniam, 2018; 

Alimian et al., 2019; Bahria et al., 2019; Liu et al., 2019; 

Duffuaa et al., 2020; Ghaleb et al., 2020; and Kolus et al., 

2020). 

Exact solution methods such as Branch-and-Bound 

(BB) for integer and mixed-integer programming models, 
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and Generalized Reduced Gradient (GRG2) algorithm for 

nonlinear programming models have been employed in the 

literature mostly for single-machine models or for small-

scale multi-machine situations (Cassady and Kutanoglu, 

2003; Aghezzaf et al., 2007; Aghezzaf and Najid, 2008; 

Nourelfath and Chatelet, 2012; Portioli-Staudacher and 

Tantardini, 2012; Bajestani et al., 2014; Yalaoui et al., 2014; 

Kumar and Lad, 2017;  Ao et al., 2019; and Polotski et al., 

2019). 

It has been reported that most integrated production and 

maintenance scheduling problems, with availability 

constraints, under different machine configurations and 

various objective functions are NP-hard problems (Kubiak et 

al., 2002). Because of this restraining feature, various 

heuristic and metaheuristic algorithms such as Genetic 

Algorithms (GA) and Simulated Annealing (SA) have been 

employed to tackle these problems (Aggoune and Portmann, 

2006; Wang, 2013; Zhao et al., 2014; Ettaye et al., 2018). 

Computer Numerical Control (CNC) machines are very 

important equipment in automated manufacturing systems. 

CNC machines use digitized data such as a computer and 

Computer Aided Manufacturing (CAM) program to control, 

automate, and monitor the operations of the machine 

(McNeel.com, 2016). The machine can be a milling machine, 

lathe, router, welder, grinder, laser or waterjet cutter, sheet 

metal stamping machine, robot, or many other types of 

machines. Since the CNC machines are repairable systems 

the failure characteristics of components as well as costs of 

possible preventive maintenance and replacement actions 

along with unexpected failure expenses can be estimated 

from the recorded historical data. 

In this research, we develop a multi-objective 

mathematical model for a CNC machine by considering the 

equipment reliability for preventive maintenance purposes, 

the overall availability of the system for production aspects, 

and total operational costs for both preventive maintenance 

and manufacturing planning decisions. The manufacturing 

planning aspect of the model is captured by downtime costs 

and the overall availability of the system. This modeling 

approach enables the production planner to obtain trade-off 

solutions (aka, compromise solutions), with regard to three 

objectives, by which the efficient frontier can be identified. 

The remainder of this manuscript is organized as follows: in 

order to identify the gaps in the body of knowledge, the 

relevant literature is reviewed in Section 2. The problem 

description and formulation along with its difficulty aspects 

are illustrated in Section 3. In Section 4, the motivations 

behind the development of solution method are discussed. 

Computational results including presentation of a practical 

example, properties and practicality of the optimal solutions, 

and validation of the model and solution algorithm are 

presented in Section 5. Section 6 summarizes the 

contribution of the study and provides direction for future 

research and expansion. 
 

2. LITERATURE REVIEW 
2.1 Applications: Single-Machine vs. Multi-

Machine 
2.1.1 Single-Machine Models 

Maintenance planning literature typically addresses the 

relationship between maintenance and production 

scheduling on a tactical level where the production process 

is limited to a single machine and with an explicit 

mathematical model representing machine deterioration 

(Bajestani et al., 2014). An early integrated model that 

simultaneously determines production scheduling and 

preventive maintenance planning decisions to minimize the 

total weighted tardiness of jobs was proposed by Cassady 

and Kutanoglu (2003). In that study, the integrated 

modelling approach and its performance is compared against 

the cases of solving the production scheduling and 

preventive maintenance planning problems independently. 

The numerical results showed an average 30% reduction in 

expected total weighted tardiness. Multiple objective 

functions including minimization of maintenance cost, 

makespan, total weighted completion time of jobs, total 

weighted tardiness, and maximization of machine 

availability were considered in the work of Yulan et al. 

(2008). They used a multi-objective genetic algorithm to 

solve the integrated problem of production and preventive 

maintenance scheduling originally introduced by (Cassady 

and Kutanoglu, 2003). 

A significant portion of the literature is devoted to the 

cost minimization through combined preventive 

maintenance and production control policies (Wang and Liu, 

2013; Yalaoui et al., 2014; Wang and Liu, 2015; and 

Nourelfath et al., 2016). A production system subject to 

random failures in which any maintenance action in a period 

would reduce the system’s production capacity is studied by 

Aghezzaf et al. (2007). The objective in their study is to find 

an integrated lot-sizing and preventive maintenance strategy 

for a system to minimize the expected sum of production and 

maintenance costs while satisfying the demand without 

back-orders. Aghezzaf et al. (2016) also formulated a more 

practical integrated model as a mixed-integer nonlinear 

optimization problem for which a linearization approach is 

also developed to reduce the complexity issues of solving 

such model. An integrated production scheduling and 

preventive maintenance planning model is proposed as a 

minimax problem of weighted tardiness by incorporating 

both for a job-shop problem with single-machine (Pan et al., 

2010). 

Suliman and Jawad (2012) formulated a mathematical 

model to optimize the preventive maintenance intervals and 

lot sizes for a single-unit single-item production system. 

Their proposed model considers average total costs of the 

maintenance, inventory holding, non-conforming items, and 

shortage over the planning horizon. In another study, an 

integrated mathematical model for a multi-product, multi-

period, single-machine manufacturing system to minimize 

the total cost of production, inventory, energy, maintenance, 

minimal repair along with energy consumption constraints is 

developed by Yildirim and Nezami (2014). Lu et al. (2015) 

addressed the integrated problem for a single machine in 

which optimal sequence of jobs, preventive maintenance 

times, and jobs’ completion times can be determined 

simultaneously. More complex integrated production, 

maintenance, and quality control model for an imperfect 

process in a multi-period multi-product single-machine 

under capacitated lot-sizing assumptions is also discussed in 

Nourelfath et al. (2016). 
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2.1.2 Multi-Machine Models 

A job shop is a type of manufacturing setting in which 

low-quantity high-variety of custom products are produced. 

In a job shop environment, most products require unique set-

ups and production sequences and priorities. In flow shop 

systems, on the other hand, in order to achieve a smooth and 

less interrupted production flow, production processes are 

mostly designed in a linear structure in which minimization 

of machines’ idle times is the highest priority. Single-

machine models have been successfully used in job shop 

problems whereas multi-machine models are more 

appropriate for flow shop situations that take production and 

inventory planning into consideration. 

In order to find an optimal integrated lot-sizing and 

preventive maintenance strategy for a multi-state system 

with production and maintenance costs and demand 

constraints, Machani and Nourelfath (2012) proposed a 

variable neighborhood search as a solution method. 

Nourelfath and Chatelet (2012) also dealt with the integrated 

problem at a tactical level in which products must be 

produced in lots during a finite planning horizon with 

demand requirements. Fitouhi and Nourelfath (2014) 

embedded a noncyclical preventive maintenance with 

tactical production planning in a multi-state system to 

determine a combined lot-sizing strategy and preventive 

maintenance operations. Sitompul and Aghezzaf (2011) 

formulated a two-level hierarchical aggregate and detailed 

planning in which preventive maintenance is integrated into 

the aggregate planning while corrective maintenance actions 

are embedded into the operational planning. In the study of 

Portioli-Staudacher and Tantardini (2012), six case studies 

were used to investigate the economic effects of rescheduling 

of preventive maintenance activities in production systems. 

Wang and Liu (2015) developed a multi-objective parallel 

machine scheduling model to simultaneously minimize the 

makespan of the operations and the unavailability of the 

machines. Multi-machine multi-period and multi-product 

production systems are studied by Yalaoui et al. (2014) in 

which a polyhedral-based optimal relaxation method is 

developed to improve the computational time of the 

proposed model. An integrated production and maintenance 

scheduling in a deteriorating multi-machine production 

system over multi-period planning horizon is analyzed using 

Markov decision process modeling approach (Bajestani et 

al., 2014). A proactive approach to solve integrated 

production scheduling and maintenance planning problem in 

a multi-component flow shop application is developed by 

Cui et al. (2018) in order to optimize the bi-objective of 

quality robustness and solution robustness with failure 

uncertainty. In another study, Chansombat et al. (2018) 

presents a novel mixed integer linear programming model for 

simultaneously solving the integrated problem for a multi-

component production system in the capital goods industry. 

 

2.2 Solution Methods: Exact vs. Heuristics vs. 

Simulation 
2.2.1 Exact Solution Methods 

Najid et al. (2011) addressed the problem of finding 

optimal production lot sizes of various items by taking into 

account demand shortage and the reliability of the production 

line. Dhouib et al. (2012) formulated a joint optimization 

model of production-inventory control and preventive 

maintenance policy for a manufacturing cell. They assumed 

that the production-inventory control policy should be able 

to build and maintain a security stock of finished products in 

order to respond to demand and to avoid shortages during 

overhaul periods. Kuo and Chang (2007) studied production 

scheduling for a fixed number of jobs to be processed by a 

single machine and the maintenance planning during the 

processing times. They presented an optimal integrated plan 

for a single machine subject to cumulative damage process 

and investigated the effects of optimal preventive 

maintenance plan on production schedules with the goal to 

minimize the total tardiness. 

A branch-and-bound algorithm to solve an integrated 

optimization model for a single machine is developed by 

Wang and Liu (2013). Different variations of the algorithm 

by changing lower bounds, dominance rules, and upper 

bounds are tested to enhance the performance of the 

algorithm on randomly generated problems. Emami-

Mehrgani et al. (2016) extended a previous work on co-

optimization of production and corrective and preventive 

maintenance by investigating the impact of human error on 

repairable manufacturing systems subject to random failure 

over an infinite planning horizon and its impact on system 

capacity and inventory policies. 

 
2.2.2 Heuristics Solution Methods 

Sortrakul et al. (2005) and Sortrakul and Cassady 

(2007) developed effective solution methods based on 

genetic algorithms for solving a large-scale version of 

integrated production maintenance problem to minimize 

total weighted expected tardiness. The integrated problem in 

multi-line production systems subject to failures is studied 

by Aghezzaf and Najid (2008) in which a Lagrangian-based 

heuristic procedure to solve a nonlinear mixed-integer model 

is proposed. In order to measure the optimality gaps, 

generated test problems were solved using lower bounds 

obtained from a linear mixed-integer sub-model. Alaoui-

Selsouli et al. (2012) presented a Lagrangian relaxation-

based heuristic to solve a mixed-integer linear programming 

model for a joint production maintenance problem. 

Li et al. (2010) formulated an integrated scheduling 

model to minimize the total production costs using a genetic 

algorithm. The results showed that this integrated optimal 

policy is much more practical than the optimal maintenance 

planning and decision sequence given by the independent 

models. A production system is modeled as a multi-state 

system with binary-states, and state-independent 

components by Nourelfath et al. (2010) and solved using a 

genetic algorithm. Uzun and Ozdogan (2012) showed how a 

procedure based on genetic algorithm is successfully applied 

to determine optimal production maintenance policies. 

Series of experiments to analyze the effects of maintenance 

parameters on the production performance such as 

completion time and maximum machine availability were 

also conducted. Wang (2013) deals with an integrated bi-

objective optimization problem for production scheduling 

and preventive maintenance in a single-machine context with 

sequence-dependent setup times. In order to solve this 

integrated problem, the author employed NSGA-II and 

SPEA2 evolutionary algorithms to find an approximation of 

the Pareto-optimal front. In order to minimize the total 

production costs, preventive maintenance costs, and minimal 
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repair costs, Xiao et al. (2016) proposed an integrated 

optimization model solved by random parameter genetic 

algorithms. Boudjelida (2019) developed ants colony 

optimization, genetic algorithm, tabu search and some 

hybridizations of these methods to tackle the integrated 

production and maintenance scheduling under uncertainties. 

 

2.2.3 Simulation Methods 

If the modeling approach considers uncertainty in the 

parameters such as supplier quality rating, customers 

demand, machine quality rating, etc., along with probability 

distributions for these parameters, incorporation of 

simulation-based methods (e.g., simulation-based 

optimization) would be an appropriate way to cope with the 

uncertainties. Simulation-based optimization methods 

combine computer simulation with optimization techniques 

such as exact methods, evolutionary algorithms, and the 

Response Surface Methodology to heuristically solve 

analytically or numerically ill-structured problems (Tekin 

and Sabuncuoglu, 2004; Gosavi, 2015; and Ekin, 2018). 

Assid et al. (2015) presented a control policy to 

accurately imitate the production system behavior and to 

optimize the joint production maintenance control policy 

parameters using combined continuous/discrete event 

simulation models. Bouslah et al. (2016b) proposed a type-1 

continuous sampling plan (CSP-1) along with make-to-stock 

production and maintenance policies for a production system 

under quality and reliability deteriorations. For both plans, 

the optimization problem is to minimize the total cost subject 

to outgoing quality constraint. Series of numerical examples 

are discussed to demonstrate the effectiveness of the solution 

approach and to analyze the interactions among production, 

inventory, quality, maintenance, and reliability aspects. The 

study is further expanded to meet customer requirements by 

considering an average outgoing quality limit (AOQL) 

constraint in their optimization problem (Bouslah et al., 

2016a). Purohit and Lad (2016) assume demand, supply, and 

machine yield as ransom variables and developed an 

integrated model to determine optimal production lot size, 

assembly-specific preventive maintenance schedule, and job 

sequencing for a multi-component machine. In the study of 

Kumar and Lad (2017) the goal is to find optimal production 

schedule and maintenance plan by which the total 

operational cost is minimized. A simulation-based 

optimization method to solve the problem is employed and it 

is found that for various scenarios the integrated approach 

reduces the total cost up to 36% compared to independent 

modeling approaches. A stochastic mathematical model for 

an integrated problem of production lot sizing, quality 

control, and condition-based maintenance is formulated and 

solved by a simulation-based optimization approach 

coupling Monte Carlo Simulation and Response Surface 

Methodology (Cheng et al., 2018). 

 

2.3 Contributions of this Research 
In order to identify potential gaps in the body of 

knowledge, the characteristics of modeling approach in 

relevant literature is reviewed and analyzed. Table 1 

summarizes the reviewed literature based on the application, 

model type, objective functions, and the solution methods. 

The last row of the table also highlights the features of our 

developed model. We found that although there have been 

much extensive work in the literature, majority of the 

published articles dealt with single-machine or single-

component production systems and more sophisticated 

multi-component systems have received less attention. 

Furthermore, reliability and availability aspects of integrated 

manufacturing and preventive maintenance planning have 

not been studied in-depth compared to the models with cost 

minimization or equivalent criteria (e.g., makespan). This 

provides us an opportunity to extend the previous work of 

multi-component  systems   by  incorporating  multi-

objective modeling approach with total operational cost, 

overall system reliability, and overall system availability. 

The contributions of this research are summarized as 

follows: 

 

1. A new multi-component multi-objective model is 

formulated to simultaneously minimize total 

operational cost and maximize the reliability and 

availability for a CNC machine in which its 

components are degrading due to heavy use and tight 

production schedule. 

2. A new simulation-based goal programming 

optimization algorithm to solve the multi-objective 

model and to obtain the Pareto-optimal preventive 

maintenance schedules is developed. The most 

important advantage of this hybrid algorithm is that it 

does not require prior preferences of the objective 

functions from the decision maker and would let 

him/her select the desired Pareto-optimal solution 

based on other higher-level information generated from 

different operational scenarios or policies. 

 

3. PROBLEM DESCRIPTION AND 

FORMULATION 
3.1 Maintenance and Replacement Operations 

We consider a repairable multi-tasking manufacturing 

machine with N components. Most repair models assume 

that repairs result in making the component function “as 

good as new.” In other words, the component is replaced 

after each failure. It is frequently the case that repairs consist 

of replacing or restoring only a small percentage of the parts 

or components composing the machine. This leaves the 

machine in approximately the same condition (age) it was in 

just prior to the failure. It is also assumed that each 

component in the machine is subject deterioration due to age 

and usage with an increasing rate of occurrence of failure. A 

useful and somewhat natural way to model this situation is 

to treat it as a stochastic point process. However, to model 

this stochastic process, an intensity function, 𝜌(𝑡), should be 

defined as the rate of change of the expected number of 

failures is time dependent. 

 

 

𝜌(𝑡) =
𝑑𝐸[𝑁(𝑡)]

𝑑𝑡
 (1) 

  

𝐸[𝑁(𝑡)] = ∫ 𝜌(𝑡′)
𝑡

0

𝑑𝑡′ (2) 
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Table 1 Characteristics of modeling approach in the reviewed literature 

Reference 
Application Model type Objective function(s) Solution method  

Single-machine Multi-machine Deterministic Stochastic Cost/Time Reliability Availability Exact Heuristics Simulation 

(Aggoune and Portmann, 2006) +  +  +    +  
(Aghezzaf et al., 2007) +  +  +   +   
(Aghezzaf et al., 2016) +  +  +    +  
(Aghezzaf and Najid, 2008) +  +  +   + +  
(Alaoui-Selsouli et al., 2012) +  +  +    +  
(Alimian et al., 2019) +   + +   +   
(Ao et al., 2019)  +  + +   +   
(Assid et al., 2015) +   + +    + + 
(Bahria et al., 2019) +  +  +   +   
(Bajestani et al., 2014)  +  + +   +   
(Boudjelida, 2019)  +  + +    +  
(Bouslah et al., 2016a) +   + +   + + + 
(Bouslah et al., 2016b) +   + +   + + + 
(Cassady and Kutanoglu, 2003) +  +  +  + +   
(Chansombat et al., 2018)  + +  +   +   
(Cheng et al., 2018) +   + + +    + 
(Cui et al., 2018)  +  + + +   + + 
(Dhouib et al., 2012) +  +  +   +   
(Duffuaa et al., 2020) +  +  +   +   
(Ekin, 2018) +   + +    + + 
(Emami-Mehrgani et al., 2016) +   + +   +   
(Ettaye et al., 2018) +  +  +    +  
(Fitouhi and Nourelfath, 2014)  + +  +    +  
(Ghaleb et al., 2020) +   + +    +  
(Kang and Subramaniam, 2018) +   + +   +   
(Kolus et al., 2020) +  +  +  + +   
(Kubiak et al., 2002)  + +  +   +   
(Kumar and Lad, 2017)  + +  +    + + 
(Kuo and Chang, 2007) +  +  +   +   
(Li et al., 2010) +  +  +    +  
(Liu et al., 2019) +  +  +   +   
(Lu et al., 2015) +  +  + +   +  
(Machani and Nourelfath, 2012)  + +  +    +  
(Najid et al., 2011) +  +  +   +   
(Nourelfath and Chatelet, 2012)  + +  +   +   
(Nourelfath et al., 2010)  + +  +    +  
(Nourelfath et al., 2016) +  +  +   +   
(Pan et al., 2010) +  +  +   +   
(Polotski et al., 2019) +   + +   +   
(Portioli and Tantardini, 2012)  + +  +   +   
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Table 1 Characteristics of modeling approach in the reviewed literature (cont) 

Reference 
Application Model type Objective function(s) Solution method 

Single-machine Multi-machine Deterministic Stochastic Cost/Time Reliability Availability Exact Heuristics Simulation 

(Purohit and Lad, 2016)  +  + +    + + 
(Sitompul and Aghezzaf, 2011)  + +  +   +   
(Sortrakul and Cassady, 2007) +  +  +    +  
(Sortrakul et al., 2005) +  +  +    +  
(Suliman and Jawad, 2012) +  +  +    +  
(Uzun and Ozdogan, 2012) +  +    +  +  
(Wang, 2013) +  +  + +   +  
(Wang and Liu, 2013) +  +  +   +   
(Wang and Liu, 2015)  + +  +  +  +  
(Xiao et al., 2016)  + +  +    +  
(Yalaoui et al., 2014)  + +  +   + +  
(Yildirim and Nezami, 2014) +  +  +   +   
(Yulan et al., 2008) +  +  +  +  +  
(Zhao et al., 2014) +  +  +    +  
Our developed model  + +  + + + +  + 
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Because of increasing failure rate and maintainability 

assumption of the machine under study, it is assumed that 

components failure follows the Non-Homogeneous Poisson 

Process (NHPP). The Non-Homogeneous Poisson Process is 

similar to the conventional Poisson process but the rate of 

occurrence of failure is not constant and instead is a function 

of time. A common form for the intensity function which is 

called the power law process or the Weibull process is 

presented in equation (3). Table 2 lists the notations for sets, 

indices, decision variables, and parameters used to develop 

and express the multi-objective optimization model in this 

study. 

 

𝜌𝑖(𝑡) = 𝜆𝑖 . 𝛽𝑖 . 𝑡𝛽𝑖−1      ∀ 𝑖 ∈ 𝑁, 𝜆𝑖 , 𝛽𝑖 > 0 (3) 

 

 
Table 2 List and description of notations 

Sets 
N 
T 
K 

Description 
Set of components 
Set of periods during the aggregate planning 
Set of objective functions 

Indices 
i 
t 
k 

Description 
Index for component i, i ∈ N 

Index for time interval t, t ∈ T 

Index for objective function k, k ∈ K 

Decision Variables 
𝑥𝑖,𝑡  

𝑥𝑖,𝑡
′  

𝑚𝑖,𝑡 

 
𝑟𝑖,𝑡  

Description 
Effective age of component i at the start of period t, i ∈ N, t ∈ T 

Effective age of component i at the end of period t, i ∈ N, t ∈ T 

Binary variable equals to 1 if component i is minimally repaired at the end of period t, i ∈ N, t ∈ T, otherwise it is 
equal to 0. 
Binary variable equals to 1 if component i is replaced or repaired at the end of period t, i ∈ N, t ∈ T, otherwise it is 
equal to 0. 

Parameters 
L 
𝜆𝑖 

𝛽𝑖  

𝜙𝑖 

𝑀𝐶𝑖 

𝑅𝐶𝑖 

𝐹𝐶𝑖 

𝑃𝑀𝑇𝑖 

𝑅𝑇𝑖 

𝐷𝐶 

𝑓𝑘  

𝑔𝑜𝑎𝑙𝑘 

𝑤𝑘 

𝑑𝑘
+ 

𝑑𝑘
− 

Description 
Length of the aggregate planning usually between 1-2 years 
Scale parameter of intensity function for component i, i ∈ N 

Shape parameter of intensity function for component i, i ∈ N  

Improvement factor function for maintenance action on component i, i ∈ N 

Maintenance (including inspection and minimal repair) cost of component i, i ∈ N 

Replacement cost of component i, i ∈ N 

Unexpected failure cost of component i, i ∈ N 

Required time for preventive maintenance action on component i, i ∈ N 

Required time for replacement action on component i, i ∈ N 
Downtime cost of the manufacturing machine 
Objective function k, k ∈ K 

Designated goal for objective function 𝑓𝑘 , k ∈ K 

Deviation weight from a designated 𝑔𝑜𝑎𝑙𝑘 for objective function 𝑓𝑘 , k ∈ K 

Positive deviation from a designated 𝑔𝑜𝑎𝑙𝑘 for objective function 𝑓𝑘 , k ∈ K 

Negative deviation from a designated 𝑔𝑜𝑎𝑙𝑘 for objective function 𝑓𝑘 , k ∈ K 

Production and maintenance planners are interested in 

finding an optimal schedule of maintenance and replacement 

actions for each component over the aggregate planning 

interval [0, L]. The time interval [0, L] is divided into T 

discrete periods, each with equal length of L/T. At the end of 

each period t, a component can be either minimally 

maintained, replaced, or no action is to be taken. In most 

manufacturing systems, when a machine has an increasing 

failure rate, the duration of its function after repairs will 

become shorter and shorter resulting in a finite functioning 

time. Similarly, as the machine ages, its repair time will 

become longer and longer and will tend to infinity as such, 

the machine becomes non-repairable (Elsayed, 2012). 

It is assumed that preventive maintenance activities in 

period t can reduce the “effective age” of the components and 

subsequently the “failure rate” of the machine. This kind of 

maintenance activities are known as minimal repairs in the 

literature since they do not change the failure rate or 

characteristic of the machine instead they just push back 

effective age of the components. In order to keep track of 

instantaneous changes in component’s age and failure rate, 

let 𝑥𝑖,𝑡 denote the effective age of component i at the start of 

period t, and 𝑥𝑖,𝑡
′  denote the age of component i at the end of 

period t. The relationship between 𝑥𝑖,𝑡 and 𝑥𝑖,𝑡
′  can be 

expressed using equation (4). 

 

𝑥𝑖,𝑡
′ = 𝑥𝑖,𝑡 + (𝐿/𝑇)     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (4) 

 

If a component i is minimally repaired at the end of a 

period, the maintenance action effectively reduces the 

effective age of the component at the start of the next period 

as shown in equation (5). The function 𝜙 is called 

“improvement factor” that allows for a variable effect of 

maintenance on an aging component. When 𝜙 = 0, the 

minimal repair action restores the component age to a state 

of “good-as-new” (i.e., replacement). When 𝜙 = 1, the 

minimal repair action has no effect on the component age and 

the component remains in a state of “bad-as-old” (i.e., do 

nothing). Note that the minimal repair action at the end of 

period t can partially lower the failure rate of component i. 

The minimal repair action also requires duration of 𝑃𝑀𝑇𝑖  to 

be done with a cost of 𝑀𝐶𝑖 incurred at the end of the period.  

 

𝑥𝑖,𝑡+1 = 𝜙(𝑅𝐶𝑖 , 𝑀𝐶𝑖) . 𝑥𝑖,𝑡
′     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (5) 
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The improvement factor function used here is based on 

the ratio of difference of replacement and minimal repair 

costs as presented in equation (6). If a costly minimal repair 

action is performed on a component, the effective age of the 

component improves more than when an inexpensive 

maintenance is executed. As such, more expensive 

maintenance results in a greater amount of age reduction and 

failure rate improvement (Moghaddam and Usher, 2010). 

Note that if the minimal repair cost approaches to the 

replacement cost, the numerator of the fraction will approach 

to zero, and the minimal repair action will be equivalent to a 

replacement action (which is a very rare case). Conversely, 

if the minimal repair cost is very close to zero, the 

improvement factor ratio will approach to one (i.e., 

maintenance has no effect on the effective age and it is 

equivalent to do nothing action). 

 

𝜙(𝑅𝐶𝑖 , 𝑀𝐶𝑖) = (𝑅𝐶𝑖 − 𝑀𝐶𝑖)/𝑅𝐶𝑖     ∀ 𝑖 ∈ 𝑁 (6) 

 

If a machine component is replaced at the end of a 

period with a new identical component, then the effective age 

of the replaced component at the start of the next period starts 

at zero according to equation (7). Subsequently, the 

component failure behavior is returned to the state of “good-

as-new” in which the failure rate of the component drops 

from 𝜌𝑖(𝑥𝑖,𝑡
′ ) to 𝜌𝑖(0). The replacement action takes, 𝑅𝑇𝑖 , to 

be done and requires a replacement cost of 𝑅𝐶𝑖. Finally, if no 

maintenance action is taken during a period t, then a 

continuous increase in the effective age and the failure rate 

of the component is expected, as shown in equations (8)-(9). 

 

𝑥𝑖,𝑡+1 = 0     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (7) 

𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡
′      ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (8) 

𝜌𝑖(𝑥𝑖,𝑡+1) = 𝜌𝑖(𝑥𝑖,𝑡
′ )     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (9) 

 

When a future schedule of maintenance actions for a 

manufacturing machine is planned, the inevitable costs 

caused by unexpected component failures should be also 

considered in planning schedules. Since the component 

failure is a random variable, it is not possible to exactly 

determine when the unexpected failures will happen and the 

calculation of expected number of failures for each 

component in each period is usually proposed. The single 

unexpected failure cost for each component is estimated as 

𝐹𝐶𝑖 and then the expected cost of component failures in each 

period is calculated using equations (10)-(11). 

 

 

𝐹𝑖,𝑡 = 𝐹𝐶𝑖 . (Expected number of failures in [𝑥𝑖,𝑡 , 𝑥𝑖,𝑡
′ ]) 

(10) 

𝐹𝑖,𝑡 = 𝐹𝐶𝑖 . ∫ 𝜌𝑖(𝑡)𝑑𝑡
𝑥𝑖,𝑡

′

𝑥𝑖,𝑡

= 𝐹𝐶𝑖 . 𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖)     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (11) 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝐶𝑜𝑠𝑡𝑠 =  ∑ [𝐷𝐶 (1 − ∏(1 − (𝑚𝑖,𝑡 + 𝑟𝑖,𝑡))

𝑁

𝑖=1

)]

𝑇

𝑡=1

 (12) 

In a multi-component production system with failure, 

maintenance, and replacement costs, one may reduce the 

integrated scheduling problem to a simple task of finding the 

independent optimal sequence of minimal repair, 

replacement, or do-nothing actions for each component. As 

a result, a simple but impractical sequence of operations for 

each component regardless of other maintenance actions 

taken on the other components can be found. It seems 

economically and operationally advantageous in combining 

series of maintenance and replacement actions to be 

simultaneously performed. For instance, while the machine 

is shut down to replace a component the maintenance crew 

can perform repair or replacement actions on some other 

components, even if they do not require any minimal repair 

or replacement actions. Components maintenance 

dependency can be modeled by considering a downtime cost 

to be charged if any component (one or more) is minimally 

repaired or replaced in any given period. Equation (12) 

calculates the total downtime costs charged whenever a 

machine component in each period is minimally repaired or 

replaced. It can be verified that if more than one component 

in a period is minimally repaired or replaced the function 

results to a single charge for that period for the entire 

machine. In addition, the condition of 𝑚𝑖,𝑡 + 𝑟𝑖,𝑡 ≤ 1  must 

be held for all components over the intervals of the planning 

horizon enforcing that only a minimal repair, or a 

replacement, or do nothing action should be performed on 

each component. 

 

3.2 Objective Functions 
In this modeling approach, the machine reliability for 

preventive maintenance aspect, the machine availability for 

production planning, and total operational costs for both 

preventive maintenance and manufacturing planning are 

considered as the objective functions. From the definitions 

of each type of cost described above, the objective function 

of total operational costs of the system over the T periods of 

the planning horizon can be formulated as equation (13). 

 

 

𝑓1 = ∑ ∑[𝐹𝐶𝑖. 𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖) + 𝑀𝐶𝑖 . 𝑚𝑖,𝑡 + 𝑅𝐶𝑖 . 𝑟𝑖,𝑡  ]

𝑇

𝑡=1

𝑁

𝑖=1

 + ∑ [𝐷𝐶 (1 − ∏(1 − (𝑚𝑖,𝑡 + 𝑟𝑖,𝑡))

𝑁

𝑖=1

)]

𝑇

𝑡=1

 (13) 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝑒𝑥𝑝 (− ∫ 𝜌(𝑡′)𝑑𝑡′
𝑡

0

) (14) 
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𝑅𝑒𝑙𝑖,𝑡 = 𝑒𝑥𝑝(− ∫ 𝜆𝑖 . 𝛽𝑖 . 𝑡𝛽𝑖−1𝑑𝑡
𝑥𝑖,𝑡

′

𝑥𝑖,𝑡

) = 𝑒𝑥𝑝(−𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖))     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (15) 

𝑓2 = ∏ ∏[𝑒𝑥𝑝 (−𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖))]

𝑇

𝑡=1

𝑁

𝑖=1

 
                                                                                         

(16)                                                 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
                                 

                                                                      

(17)            

 

𝐴𝑖,𝑡 =
(𝑥𝑖,𝑡

′ − 𝑥𝑖,𝑡)

(𝑥𝑖,𝑡
′ − 𝑥𝑖,𝑡) + 𝑅𝑇𝑖 . 𝜆𝑖((𝑥𝑖,𝑡

′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖) + (𝑃𝑀𝑇𝑖 . 𝑚𝑖,𝑡 + 𝑅𝑇𝑖 . 𝑟𝑖,𝑡)
     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (18)      

 

𝑓3 = ∏ ∏ [
(𝑥𝑖,𝑡

′ − 𝑥𝑖,𝑡)

(𝑥𝑖,𝑡
′ − 𝑥𝑖,𝑡) + 𝑅𝑇𝑖 . 𝜆𝑖((𝑥𝑖,𝑡

′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖) + (𝑃𝑀𝑇𝑖 . 𝑚𝑖,𝑡 + 𝑅𝑇𝑖 . 𝑟𝑖,𝑡)
]

𝑇

𝑡=1

𝑁

𝑖=1

 
     (19) 

 
 

 

In order to formulate the machine reliability, first it is 

required to formulate the reliability function for each 

repairable component i in period t. It is proven that the 

reliability of a repairable comment can be calculated using 

its intensity function as in equation (14) according to 

(Elsayed, 2012). Replacing 𝜌𝑖(𝑡) using equation (3) and 

taking the integral, we can calculate the reliability of 

component i in period t, equation (15). 

In this research, we intend to model the failure behavior 

of a multi-component manufacturing machine in which the 

production operations require that all components of the 

machine function flawlessly. Without loss of generality, we 

can assume that the machine components are arranged in 

series and this will help us to formulate the machine 

reliability function based on its individual components 

reliabilities by equation (16). 

A machine component may become unavailable 

because of the occurrence of unexpected failures resulting to 

the case of repair or replacement of the failed or faulty  

component. A minimal repair action normally takes some 

time, 𝑃𝑀𝑇𝑖 , and replacement actions need time to 

replacement, 𝑅𝑇𝑖 , to be carried over. On the other hand, a 

component may become unavailable because of scheduled 

minimal repairs or replacement activities. Finally, If no 

preventive maintenance or replacement action is performed 

on a component, the likelihood of component unavailability 

increases over time and eventually resulting to the 

component failure due to increase of failure rate. 

The general form of the system availability can be 

expressed as equation (17) where MTTF is the Mean Time to 

Failure and MTTR is the Mean Time to Repair for a failed 

system. The availability function for a repairable component 

i in period t can be generalized from equation (17) to reflect 

two cases of unavailability. Considering 𝑥𝑖,𝑡
′ − 𝑥𝑖,𝑡 as the 

equivalent to MMTF along with time to perform minimal 

repair and replacement actions, the availability of component 

i is formulated as equation (18).  

Similar to the reliability function, the availability of the 

series system of components can be formulated by the 

product of individual components’ availability over a 

specified number of periods as shown in equation (19). 

 

3.3 Multi-Objective Optimization Model for 

Multi-Component Machine 
Based on the descriptions and formulation presented 

above, the multi-objective nonlinear mixed-integer 

optimization model for the integrated manufacturing and 

preventive maintenance planning with the total operational 

costs, overall reliability, and system availability can be 

expressed as follows: 

𝑀𝑖𝑛   𝑓1 = ∑ ∑[𝐹𝐶𝑖. 𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖) + 𝑀𝐶𝑖. 𝑚𝑖,𝑡 + 𝑅𝐶𝑖 . 𝑟𝑖,𝑡  ]

𝑇

𝑡=1

𝑁

𝑖=1

+ ∑ [𝐷𝐶 (1 − ∏(1 − (𝑚𝑖,𝑡 + 𝑟𝑖,𝑡))

𝑁

𝑖=1

)]

𝑇

𝑡=1

 

(13) 

𝑀𝑎𝑥   𝑓2 = ∏ ∏[𝑒𝑥𝑝 (−𝜆𝑖((𝑥𝑖,𝑡
′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖))]

𝑇

𝑡=1

𝑁

𝑖=1

 (16) 

𝑀𝑎𝑥   𝑓3 = ∏ ∏ [
(𝑥𝑖,𝑡

′ − 𝑥𝑖,𝑡)

(𝑥𝑖,𝑡
′ − 𝑥𝑖,𝑡) + 𝑅𝑇𝑖 . 𝜆𝑖((𝑥𝑖,𝑡

′ )𝛽𝑖 − (𝑥𝑖,𝑡)𝛽𝑖) + (𝑃𝑀𝑇𝑖 . 𝑚𝑖,𝑡 + 𝑅𝑇𝑖 . 𝑟𝑖,𝑡)
]

𝑇

𝑡=1

𝑁

𝑖=1

 (19) 

Subject to  

𝑥𝑖,1 = 0     ∀ 𝑖 ∈ 𝑁 (20) 

𝑥𝑖,𝑡 = (1 − 𝑚𝑖,𝑡−1)(1 − 𝑟𝑖,𝑡−1)𝑥𝑖,𝑡−1
′ + 𝑚𝑖,𝑡−1 (

𝑅𝐶𝑖 − 𝑀𝐶𝑖

𝑅𝐶𝑖

) 𝑥𝑖,𝑡−1
′      ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (21) 

𝑥𝑖,𝑡
′ = 𝑥𝑖,𝑡 + (𝐿/𝑇)     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (22) 



 

 

Moghaddam: A Multi Objective Modeling Approach for Integrated Manufacturing and Preventive Maintenance Planning 

92         Operations and Supply Chain Management 14(1) pp. 83 – 99 © 2021 

 

𝑚𝑖,𝑡 + 𝑟𝑖,𝑡 ≤ 1     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (23) 

𝑚𝑖,𝑡 , 𝑟𝑖,𝑡 ∈ {0, 1}     ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (24) 

𝑥𝑖,𝑡 , 𝑥𝑖,𝑡
′ ≥ 0 (25) 

  

In the above optimization model, the constraint (20) 

sets that the initial age to zero for each component as all 

components are supposed to be brand new at the beginning. 

The constraint (21) computes the effective age of 

components based on an action (minimal repair, 

replacement, or do nothing) that was performed in the 

previous period. If a component was replaced in the previous 

period, 𝑟𝑖,𝑡−1 = 1, 𝑚𝑖,𝑡−1 = 0, then its effective age drops 

down to 𝑥𝑖,𝑡 = 0 fat the start of the next period, if a 

component is minimally repaired, 𝑟𝑖,𝑡−1 = 0, 𝑚𝑖,𝑡−1 = 1 then 

its effective age becomes 𝑥𝑖,𝑡 = (
𝑅𝐶𝑖−𝑀𝐶𝑖

𝑅𝐶𝑖
) 𝑥𝑖,𝑡−1

′  as described 

earlier in equation (6). Finally if no action was taken, 𝑟𝑖,𝑡−1 =

0, 𝑚𝑖,𝑡−1 = 0, the component continues its normal aging so 

its effective age at the start of next period will be equal to its 

effective age at the end of the previous period, i.e., 𝑥𝑖,𝑡 =

 𝑥𝑖,𝑡−1
′ . Constraint (22) reflects the relationship between 

starting and ending effective age of components. The 

necessary condition (23) must be held enforcing that only a 

minimal repair, or a replacement, or do nothing action should 

be performed on each component in each period. Constraint 

(24) restricts the primary decision variables to be binary and 

constraint (25) indicates that the starting and ending effective 

age variables are non-negative. 

4. SOLUTION METHOD 
Since multi-objective optimization problems have 

equally important Pareto-optimal solutions, an ideal solution 

method should be able to find multiple Pareto-optimal 

solutions at once and let the decision maker choose the 

desired solution based on other higher-level information 

(e.g., long term strategies, short term goals, and what-if 

scenarios). As such, the Pareto-optimal solutions found by 

an ideal method should be independent from the user’s 

predefined input parameters. In the past three decades 

numerous multi-objective evolutionary algorithms have also 

been developed and tested as trustable and efficient solution 

methods to solve multi-objective models (Deb, 2011). But, 

the main disadvantage of these algorithms is that they are 

limited to obtaining good or near optimal solutions and 

achievement of exact optimal solution(s) is never 

guaranteed. The major drawback of the standard goal 

programming method as an exact method is that it can find 

only a single Pareto-optimal solution that is highly dependent 

to the decision maker’s choice of the designated goals and 

the weights of deviation from the goals. In order to eliminate 

this dependability, the following simulation-based 

optimization algorithm is proposed in which randomly 

generated objective goals and deviation weights are 

employed in the goal programming submodel. 

 

4.1 Simulation-Based Goal Programming Optimization 

Start 

Compute the minimum and maximum values of the 

individual objective function k, 𝑓𝑘
𝑚𝑖𝑛 , 𝑓𝑘

𝑚𝑎𝑥    ∀ 𝑘 ∈ 𝐾 

 

𝑓𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑓𝑘 − 𝑓𝑘
𝑚𝑖𝑛

𝑓𝑘
𝑚𝑎𝑥 − 𝑓𝑘

𝑚𝑖𝑛
    ∀ 𝑘 ∈ 𝐾 (26) 

 

Current iteration = 1 

While (current iteration ≤ designated number of 

iterations) 

Import the estimated parameters of the 

optimization model from the Excel file 

 

𝑤𝑘 = 𝑟𝑎𝑛𝑑(0,1)    ∀ 𝑘 ∈ 𝐾 (27) 

 

𝑤𝑘
′ =

𝑤𝑘

∑ 𝑤𝑘
𝐾
𝑘=1

    ∀ 𝑘 ∈ 𝐾 (28) 

 

𝑔𝑜𝑎𝑙𝑘 = 𝑟𝑎𝑛𝑑(𝑓𝑘
𝑚𝑖𝑛 , 𝑓𝑘

𝑚𝑎𝑥)    ∀ 𝑘
∈ 𝐾 

(29) 

𝑔𝑜𝑎𝑙𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

=
𝑔𝑜𝑎𝑙𝑘 − 𝑓𝑘

𝑚𝑖𝑛

𝑓𝑘
𝑚𝑎𝑥 − 𝑓𝑘

𝑚𝑖𝑛
    ∀ 𝑘 ∈ 𝐾 

(30) 

 

Solve the following Goal Programming 

submodel: 

𝑀𝑖𝑛  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑜𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 =
 𝑤1

′𝑑1
+ + 𝑤2

′ 𝑑2
−+𝑤3

′ 𝑑3
+ 

 

(31) 

 

Subject to: 
 

𝑓𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + (𝑑𝑘

− + 𝑑𝑘
+)

= 𝑔𝑜𝑎𝑙𝑘
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑     ∀ 𝑘 ∈ 𝐾 

(32) 

 

the set of constraints (20)-(25) 
 

Current iteration = Current iteration + 1 

End while 

End 

5. CASE STUDY AND 

COMPUTATIONAL RESULTS 
5.1 Data Setting 

In order to demonstrate an application of the developed 

model and show the effectiveness of the proposed solution 

method for a real multi-component machine, a case study is 

developed from a CNC metalworking machine. The 

reliability characteristics of the machine’s components were 

determined from the historical components’ failures, repairs 

and replacements. In addition to the failure characteristics of 

components, costs of possible preventive maintenance and 

replacement operations along with unexpected failure costs 

were estimated from charges recorded in accounting books 

as shown in Table 3. The downtime cost of the machine 

system is assumed to be $12,500 per month for 24 months. It 

is also assumed that a minimal repair action (including 

inspection and some basic repair if required) takes 1/4 of a 

working day (i.e., 4 hours) whereas a replacement action may 

require a full working day of a two 8-hour shifts (i.e., 16 

hours). Visual Basic.Net programming is used to develop the 

computer simulation in which LINGO optimization software 
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is utilized to solve the goal programming submodel on a 

laptop computer with Intel® Core™ i7-6600U CPU @ 2.60 

GHz and 16.00 GB RAM. 

 

5.2 Optimal Solutions for Individual Objective 

Functions 
Tables 4-6 show the optimal solutions with respect to 

each objective function independently, while ignoring the 

other objective functions, subject to the model’s constraints 

(20)-(25). Table 4 illustrates the optimal preventive and 

replacement schedule for the total operational cost with 

lowest possible value of $95021. As can be seen, the 

schedule calls for a single downtime in period 11 (almost in 

the middle of the planning horizon) to perform replacement 

action on only 8 components. The trade-off is to have a very 

unreliable machine likely to fail at any time or with highly 

degraded components by which the outputs will be sub-

standard with major quality issues. Table 5, on the other 

hand, shows the optimal preventive and replacement 

schedule for the system reliability with highest possible 

value of 0.9234. In this situation, the optimal schedule calls 

for shutting down the machine every month to perform 

replacement action on all components. This would be 

completely unrealistic from the operational aspect and also 

from the cost perspective. Finally, Table 6, demonstrates the 

optimal preventive and replacement schedule for the system 

availability measure with highest possible value of 0.8799. 

Like the optimal schedule shown in Table 4, this optimal 

schedule calls for a single downtime at the middle of the 

planning horizon in period 12 to perform replacement actions 

on only 6 components. The drawbacks of implementing such 

a schedule is to have a very unreliable machine with highly 

degraded components. As discussed above, optimizing the 

systems maintenance schedule by only considering a single 

objective function results to an unacceptable scenario in 

which the other aspects of the system are completely 

compromised. In the next section, the proposed solution 

method is employed in order to capture the existing trade-

offs among objective functions. 

 
Table 3 Characteristics of components in the production system 

Components Scale parameter Shape parameter Maintenance cost ($) Replacement cost ($) Failure cost ($) 

1 0.0034 2.18 592 2,369 7,107 
2 0.0031 2.04 750 3,000 9,000 
3 0.0028 2.08 461 1,844 5,532 
4 0.0037 1.94 682 2,728 8,184 
5 0.0030 1.81 567 2,269 6,807 
6 0.0025 2.15 642 2,569 7,707 
7 0.0021 2.18 565 2,260 6,780 
8 0.0018 1.93 453 1,813 5,439 
9 0.0024 1.87 718 2,872 8,616 
10 0.0022 2.13 679 2,716 8,148 

 

 

Table 4 The optimal solution for the total operational cost (Minimum cost = $95021) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1           r              

2           r              

3           r              

4           r              

5           -              

6           r              

7           r              

8           -              

9           r              

10           r              

 

 

Table 5 The optimal solution for the system reliability (Maximum reliability = 0.9234) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 r r r r r r r r r r r r r r r r r r r r r r r r 

2 r r r r r r r r r r r r r r r r r r r r r r r r 

3 r r r r r r r r r r r r r r r r r r r r r r r r 
 
 
 

4 
5 

r 
r 

r r r r r r r r r r r r r r r r r r r r r r r 

r r r r r r r r r r r r r r r r r r r r r r r 

6 r r r r r r r r r r r r r r r r r r r r r r r r 

7 r r r r r r r r r r r r r r r r r r r r r r r r 

8 r r r r r r r r r r r r r r r r r r r r r r r r 

9 r r r r r r r r r r r r r r r r r r r r r r r r 

10 r r r r r r r r r r r r r r r r r r r r r r r r 
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Table 6 The optimal solution for the system availability (Maximum availability = 0.8799) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1            r             

2            r             

3            r             

4            -             

5            -             

6            r             

7            r             

8            -             

9            -             

10            r             

 

5.3 Structure of the Pareto-Optimal Solutions 

Tables 7-9 depict examples of Pareto-optimal 

schedules by running three different modifications using 

generated random goals based on uniform distribution, 

generated random goals based on normal distribution, and 

the objective functions’ ideal goals of the simulation-based 

optimization algorithm. First, it is important to mention most 

minimal repair and replacement actions shown to be 

performed in the same period (in a column-based pattern) 

capturing the effect of the downtime penalty cost. Another 

finding to be noted is that once a minimal repair or 

replacement action recommended to be performed on a 

component, do nothing actions will follow the action 

previously taken for subsequent periods. The Tables 7-9 also 

provide the random weights, random goals, and optimal 

values of the objective functions for each schedule instance. 

It should be noted that the developed mathematical 

model and solution method in this research can handle 

medium-scale problems with 100-200 components over 2-3 

years of planning horizon. However, for large-scale 

problems with more than 500 components obtaining the 

exact optimal solution(s) would be very time-consuming if 

not impossible. In those cases, it is recommended to develop 

special-purpose heuristic or metaheuristic algorithms to be 

able to get the near-optimal solutions which in many cases 

are satisfactorily enough for practical applications. 

 

 

Table 7 A Pareto-optimal schedule with uniform random goals and random deviation weights 

 (w1 = 0.1956, w2 = 0.4175, w3 = 38.69, goal1 = $187408, goal2 = 0.7324, goal3 = 0.6713) 

 (Cost = $223930, Reliability = 0.7104, Availability = 0.6010) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1    r   r   r   r   r   r   r   

2    r   m   r   r   m   r   m   

3    r   r   r   m   r   r   r   

4    m   r   m   r   r   r   m   

5    -   r   m   r   m   r   m   

6    r   r   r   r   m   r   r   

7    r   r   r   r   r   m   r   

8    m   r   m   r   r   r   r   

9    r   r   m   r   m   r   m   

10    m   r   r   r   r   r   r   

 

 

Table 8 A Pareto-optimal schedule with normal goals and random deviation weights 

 (w1 =0.5627, w2 = 0.1238, w3 = 0.3135, goal1 = $272334, goal2 = 0.6836, goal3 = 0.7541) 

 (Cost = $195937, Reliability = 0.6511, Availability = 0.5769) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

 1   r   r   r   m   r   r   r  m  

 2   r   m   r   r   r   m   r  m  

 3   r   r   r   r   r   r   r  m  

4      r   r   r   r   r   r   r  -  

5      r   m   m   m   r   m   r  m  

6      r   r   r   r   r   r   r  r  

7      r   r   r   r   r   r   r  r  

8   m   -   r   m   m   r   r  m  

9   r   m   r   -   r   r   r  -  

10   r   r   r   r   r   m   r  r  
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Table 9 A Pareto-optimal schedule with the ideal goals and random deviation weights 

 (w1 = 0.0105, w2 = 0.6861, w3 = 0.3034, goal1 = $95021, goal2 = 0.9234, goal3 = 0.8799) 

 (Cost = $449677, Reliability = 0.8327, Availability = 0.4873) 

Month/ 
Component 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1  r  r  r  r  r  r  r  r  r  r  r  m 

2  r  r  r  r  r  r  r  r  r  m  r  r 

3  r  -  r  r  r  r  r  -  r  r  m  r 

4  r  -  r  m  r  r  r  r  m  r  r  m 

5  m  m  r  r  -  r  m  m  r  m  r  m 

6  r  r  -  r  r  -  r  r  r  r  m  r 

7  r  r  r  r  r  r  r  r  r  r  r  r 

8  m  r  m  r  -  m  m  r  r  m  m  m 

9  -  r  -  r  r  r  m  r  r  r  m  r 

10  r  r  r  r  r  r  r  r  r  r  r  m 

 

5.4 Distribution of the Pareto-Optimal Solutions 
The first milestone in solving a multi-objective 

optimization problem is to generate non-dominated solutions 

close enough to the Pareto-optimal front. The second feature 

in the solution algorithm is that the generated non-dominated 

solutions must be uniformly and widely distributed in the 

Pareto-optimal area capturing the trade-off, if there is any, 

among different objective functions. Figure 1 illustrates the 

Pareto-optimal solutions of the objective functions from 

uniformly generated random goals and deviation weights on 

a plot-matrix graph. It can be verified that the Pareto-optimal 

solutions uniformly cover a broad area of the objective 

functions’ space enabling them to capture the existing trade-

off between the operational cost, reliability, and availability 

of the machine. 

The effect of the other probability distributions to 

generate random goals on the performance of the algorithm 

is also tested by generating random goals from a normal 

distribution as shown in Figure 2. This modification 

generates non-dominated solutions clustered around the 

mean of the normal distribution, (𝑓𝑘
𝑚𝑎𝑥 + 𝑓𝑘

𝑚𝑖𝑛)/2. Being 

clustered makes the non-dominated solutions incapable of 

capturing the entire trade-off of the objectives as seen in 

Figure 2 so the third task (covering the entire area of the 

objectives’ space) in multi-objective solution procedure is 

not fully achievable using the random goals generated from 

the normal distribution. 

 

 

 

 

 
Figure 1 Distribution pattern of Pareto-optimal solutions using generated uniform random goals 
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Figure 2 Distribution of Pareto-optimal solutions using generated normal random goals 

 

 
Figure 3 Distribution of Pareto-optimal solutions using ideal goals 

 

 

 

Another modification is tested by incorporating 

deterministic ideal goals of the objective functions, 

𝑓𝑘
𝑚𝑎𝑥and 𝑓𝑘

𝑚𝑖𝑛 , along with generated random weights. This 

modification generates a different pattern of Pareto-optimal 

solutions forming better trade-off curves than the ones 

obtained by normal goals in reaching to the extreme values 

of the objectives as shown in Figure 3. However, this comes 

with an expense in which some areas in the objectives space 

are uncovered resulting to loss of uniformity (the second 

task of solving a multi-objective model is not achieved). 

However, it should be noted that the Pareto-optimal 

solutions generated from the ideal goals are not as good as 

the Pareto-optimal solutions generated from random goals in 

fulfilling the three tasks of solving multi-objective 

problems. 

6. CONCLUSIONS AND 

DIRECTIONS FOR FUTURE 

RESEARCH 
In this study, a new multi-objective nonlinear mixed-

integer optimization model to find Pareto-optimal 

maintenance and replacement schedules for a repairable 

manufacturing machine is developed. In addition, a 

simulation-based optimization algorithm is also presented. 

The proposed model and the solution method are found to 

be useful approach in solving maintenance and replacement 

planning problems faced in automated manufacturing 

systems such as CNC machines. The study could identify 

non-dominated solutions close enough to the Pareto optimal 

front and uniformly distributed over the objectives space 

revealing existing trade-offs among different objective 

functions. 
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We have identified two areas for future research and 

expansion. The first area would be incorporation of 

uncertainty features to some deterministic parameters of the 

model such as downtime cost which is in most cases is very 

challenging to estimate due to various overhead costs and 

loss in production capacities. One can adopt one of the two 

main approaches to deal with uncertainties. The first method 

is to model the uncertainties using fuzzy sets theory and the 

second approach is to use random variables and probability 

distributions that lead to stochastic programming methods. 

Having observed patterns of optimal schedules obtained by 

the exact methods such the one presented in the study, the 

second area of expansion would be to employ multi-

objective meta-heuristics algorithms such NSGAII and 

NPGA to generate near-optimal solutions for very large-

scale industrial problems with hundreds of machines and 

equipment. 
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