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ABSTRACT 
This study aims to provide a conceptual model and to 

develop a mathematical model to determine order allocation in 

multi products, multi suppliers, multi carriers, and multi 

periods problem under uncertainty. The conceptual model 

describes the connection between related variables. The 

problem is formulated in mixed integer linear programming 

(MILP) model. MILP model objective function is to minimize 

supply chain costs which are purchasing cost, ordering cost, 

inventory holding cost, carrier cost, late delivery penalty cost, 

and low-quality penalty cost. In order to illustrate the 

applicability of the MILP model, a real-world case in cement 

industry is demonstrated. Based on historical data, the most 

common uncertainty factor is supplier delivery performance 

and product quality. Those factors are experimented in MILP 

model using Monte Carlo simulation. The integration between 

MILP model and Monte Carlo simulation shows that the 

proposed model resulted a global optimum solution. 

 
Keywords: order allocation, optimization, simulation, supplier 

selection, linear programming 

1. INTRODUCTION 
The global industrial competition is getting more 

intense. Many players attempt to improve their business 

process in order to gain competitive advantage. They 

cooperate and coordinate amongst themselves to get more 

efficiency in their business operations. Higher efficiency 

helps a company achieve competitive advantage (Hosseini et 

al., 2018). Many factors in today’s global market have forced 

companies to gain a competitive advantage by focusing 

attention to their entire supply chain (Mendoza & Ventura, 

2010). In a supply chain, sourcing is one of the most strategic 

aspect when a company attempts to reduce cost and improve 

competitiveness (Xia & Wu, 2007). One of the crucial steps 

in sourcing is supplier selection process. Selecting the best 

suppliers and allocating orders to the selected suppliers is a 

significant business process (Jolai et al., 2011). Selecting the 

right suppliers is a key to the procurement process and 

represents a major opportunity for companies to reduce costs 

(Kumar et al., 2018). A proper supplier selection process 

gives an opportunity to cost reduction that affects the 

company efficiency. 

The aspect that becomes an issue in selecting supplier 

selection is the method for selecting the best supplier. The 

supplier selection problem can be either a single-sourcing 

problem, in which one supplier is selected to satisfy the 

firm’s entire demand, or a multiple-sourcing problem, in 

which more than one supplier is selected (Hamdan & 

Cheaitou, 2017). Ustun & Demirtas (2008) in their paper said 

basically there are two kinds of supplier selection problem. 

In the first kind of supplier selection, one supplier can satisfy 

all the buyer’s needs (single sourcing). The management 

needs to make only one decision: which supplier is the best. 

In the second type (multiple sourcing), no supplier can 

satisfy all the buyer’s requirements. The use of single 

sourcing if a supplier can meet all the needs of buyer such as 

quality, quantity, and delivery, while multiple sourcing if 

there is no single supplier that can meet all the needs of 

buyers due to various limitations such as capacity, price, 

quality level, and delivery time (Ware et al., 2014).  

Many authors have published some research about 

multiple-sourcing selection. Those studies aimed to provide 

a procedure or a tool to select the best feasible alternative in 

decision making. Choudhary & Shankar (2013) developed 

mixed integer linear programming (MILP) model 

considering purchasing cost, order cost, inventory holding 

cost, late delivered product cost, using multi carriers for 

multi suppliers in multi periods. Wicaksono et al. (2018) also 

provided a MILP model considering discounts using a single 

carrier for multi products, multi suppliers in multi periods. 

Another research by Wicaksono et al. (2019), the authors 

integrated carrier selection into a DSSP model where 
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multiple products are procured from multiple suppliers 

(Wicaksono et al., 2019). Romero-Hernandez et al. (2021) 

proposed a modified Quality Function Deployment (QFD) 

approach to be an integrated framework for supply chain 

selection. This methodology is applied for a start up 

company to balance between fulfillment and availability of 

supply chain. A research conducted by Mujkic et al. (2018) 

shows that different supply chain mathematical models and 

formulations applied in sustainability dimensions. The 

research also describes that most authors adopted MILP as 

the modelling approach. However, only few research 

considering uncertainty and randomness in their paper. 

According to Chen et al. (2006), the supplier selection may 

involve several and different criteria, a combination of 

different decision models, group decision-making and 

various forms of uncertainty. 

In this paper, we provide a conceptual model to show 

the multi products, multi suppliers, multi carriers, and multi 

periods problem in a diagram. We also develop a 

mathematical model in mixed integer linear programming 

(MILP) model to determine the optimum order allocation 

solution. We experiment with the model by generating 

random value in delivery performance and product quality as 

the uncertainty factors. These two factors are most common 

uncertainty factor and also have a financial impact, like a 

penalty cost to a supplier who cannot meet the buyer 

requirement. We use Monte Carlo simulation to generate 

random value and combine the result to the MILP model. 

The Monte Carlo method of statistical analysis uses random 

time series generated with spectral characteristics similar to 

the actual data time series used in producing the statistic 

fields (Stanford & Ziemke, 1994). Monte Carlo 

experimentation is the use of simulated random numbers to 

estimate some functions of a probability distribution (Gentle, 

2010). Therefore, this study aims to provide a decision-

making model to solve multi products, multi suppliers, multi 

carriers, and multi periods order allocation problem under 

uncertainty. 

This paper is divided into 5 sections. Section 1 

discusses about the background of this research. The next 

section presents a literature review and gap on previous 

research. Third section provides the development model, 

including conceptual model and MILP model. Section 4 

shows data experiment in the real-world case. Finally, the 

last section discusses about conclusion and future research. 

2. LITERATURE REVIEW 
In supply chain management, supplier selection is a part 

of purchasing process. The stage of supplier selection starts 

from identifying, evaluating and selecting the best supplier 

in accordance with particular criteria. The purchasing 

function is increasingly seen as a strategic issue in 

organizations. Buyer and supplier relationships in 

manufacturing enterprises have received a great deal of 

attention (Chen, Lin & Huang, 2006). In traditional 

practices, first suppliers are selected, and then the buyer, by 

taking some other considerations and side constraints into 

account, makes the final decision on how much to order from 

each. But in the recent decade, researchers have concentrated 

on integrated approaches in which the issues of supplier 

selection and order allocation are simultaneously 

investigated (Jolai et al., 2011). 

Most of supplier selection and order allocation problem 

are multi objective issue. It means there is over one objective 

but conflicting each other. Pan & Wang (2014) presented a 

multi-objective model of order allocation using mixed 

integer linear programming. Mendoza & Ventura (2010) 

investigated supplier selection and order quantity allocation 

problem using non-linear programming and Power of Two 

(POT). The previous research mostly discussed quantitative 

aspect. Kumar et al. (2018) added qualitative aspect in their 

research. They developed supplier selection and order 

allocation model using Analytical Hierarchy Process (AHP) 

and Linear Physical Programming. Hamdan & Cheatiou 

(2017) added green criteria on their approach. Using fuzzy 

TOPSIS, AHP, optimization, they proposed the model to 

solve supplier selection and order allocation problem. 

Wicaksono et al. (2018) developed a mixed integer linear 

programming (MILP) model considering discount in multi 

products, multi suppliers and multi periods. Choudhary & 

Shankar (2013) developed MILP model to minimize 

purchasing cost, order cost, inventory holding cost, late 

delivered product cost using multi carriers for multi suppliers 

in multi periods but in a single product. 

A list of literature review is depicted in Table 1. Many 

of these previous research already offered a multi-objective 

problems solution. The authors developed a model, but in 

limited variables. In this paper, we fulfill the drawback by 

examining all related variables into a single mathematical 

model. Only few literatures considered uncertainty and 

randomness into their model. Some of them are Hamdan & 

Cheatiou (2017),  Jolai et al., (2011), and Chen et al. (2006). 

The rest of the literature assume that all of the variables are 

constant and deterministic. We integrated the model with 

Monte Carlo simulation to accommodate uncertainty. Data 

experiment in real-world case is also applied to test the 

model. This study clearly aims to fulfill the gap in previous 

papers. 

This research as mentioned above at least has three 

main contributions. The proposed model is consisted of more 

related variables. It makes the model more complex and 

closer to the real problem. The second one, integration 

Monte Carlo simulation into MILP model. This integration 

makes better approach than the previous research. The last 

contribution is about data experiment in real-world case. It is 

applied to test the feasibility of the proposed model. 

3. PROPOSED MODEL 
In this section, we provide a conceptual model and 

develop a mathematical model formulation. The conceptual 

model shows the relation between variable of products, 

suppliers, carrier, and periods. Mathematical model 

formulation shows indices, parameters, objective function, 

and decision variables of the order allocation problem. The 

problem for proposed model can be briefly described as 

follows: amount of multi products orders supplied by multi 

suppliers using multi carriers in multi periods. The objective 

function of this model is to minimize supply chain costs 

which are purchasing cost, order cost, inventory holding 

cost, carrier cost, late delivery penalty cost, and low-quality 

penalty cost. 
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1 Mixed integer linear programming model for dynamic 
supplier selection problem considering discounts 
(2018) 

MILP F H F F F - - - - - - - - - - - 

2 Joint decision of procurement lot-size, supplier 
selection, and carrier selection (2013). 

MILP F H F F F - - - - - - - - - - - 

3 Supplier selection and order allocation with green 
criteria: An MCDM and multi-objective optimization 
approach (2016). 

Fuzzy Topsis, AHP, Bi 
Objective Integer & 

Non-Integer 
Programming 

F H - - - - - F F - - - - - - F 

4 Integrating fuzzy TOPSIS and multi-period goal 
programming for purchasing multiple products from 
multiple suppliers (2011). 

Fuzzy Topsis, Fuzzy 
AHP, Goal 

Programming 
F H - F - - - - F F - - - - - F 

5 Supplier Selection and Order Allocation in Supply 
Chain (2018). 

AHP, Linear Physical 
Programming 

- - - - - - - - - - F F F - - - 

6 A serial inventory system with supplier selection and 
order quantity allocation (2010). 

Non-Linear 
Programming, POT 

F H - F - - - - - - - - - - - - 

7 Lot sizing and supplier selection with multiple items, 
multiple periods, quantity discounts, and 
backordering (2018). 

MIP, Heuristics F H F - - F - F - - - - - - - - 

8 A Multi-objective Model of Order Allocation under 
Considering Disruption Risk and Scenario Analysis 
in a Supply Chain Environment an Integrated Multi-
objective Model for Order Allocation (2014). 

Multi Objective MILP F H - F - - - - - - - - - F - - 
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Table 1 Gap research (con’t) 
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9 A fuzzy approach for supplier evaluation and 

selection in supply chain management (2006) 
Fuzzy Topsis - H - - - - - - - - - - - - - F 

10 A mixed integer linear programming model for 
dynamic supplier and carrier selection problems 
(2019).  

MILP F H F F F - - - - - - - - - - - 

11 Supplier selection with multiple criteria in volume 

discount environments (2007). 
AHP, Mixed Integer 

Programming 
H - F F F - - - - - - - - - - - 

12 An integrated multi-objective decision-making 

process for multi-period lot-sizing with supplier 
selection (2008). 

ANP, Multi Objective 
MILP 

F H - F - - - - - - - - - - - - 

13 A mixed-integer non-linear program to model 
dynamic supplier selection problem (2014). 

Mixed Integer Non-
Linear Programming 

H H - F F - - - - - - - - - - - 

14 A Heuristic Approach for Determining Lot Sized and 

Schedules Using Power-of-Two Policy (2007) 
POT H H - - - - - - - - - - - - - - 

15 This paper research (2020) 
MILP, Monte Carlo 

simulation 
F F - F F - - - - - - - - - F F 

Note: 
* : Purchasing cost, order cost, inventory holding cost, carrier cost. 

** : Multi products, multi suppliers, multi carriers, multi periods. 
F = Fully available; H = Not fully available; - = Not available 
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3.1 Conceptual Model  
A conceptual model is a diagram that shows the 

connection between variables. The model represents the real 

problem as a system. In this paper, the variables are 

suppliers, carrier modes, raw materials as treated as products, 

and periods. Figure 1 shows the conceptual model. 

 

 

Supplier 1

Supplier 2

Supplier s

Carrier 1

Carrier 2

Carrier 3

Carrier c

Raw Material 1

Raw Material i

t = 1, 2, 3,.., T  
Figure 1 Conceptual model 

 

The direction of the arrow to the right shows that the 

flow of material from the origin point (supply side) to fulfill 

the destination point (demand side). Each arrow brings some 

values. The value is the amount of order that must be 

delivered to fulfill the raw material demands and to satisfy 

the constraints. Variables also have some limitation called 

constraint. Variable of supplier has a supplier capacity 

constraint, variable of carrier has a carrier capacity 

constraint, and variable of raw material has a storage 

capacity constraint. The conceptual model describes how the 

demand of raw material i is fulfilled by supplier s that it used 

carrier c in period t. 

 

3.2  Model Assumption 
These models are restricted by some assumptions. 

Demands are known and constant. The rest of order due to 

late delivery are allowed to be delivered in the next period. 

Product with low quality is accepted and stored at the buyer 

storage, but penalty cost is still charged. Shortages are not 

allowed. Carrier costs apply to supplier, not buyer. Carrier 

costs are charged at the full truckload (FTL) capacity tariff 

despite the amount which is carried less than FTL capacity. 

Lead time is constant. In this model, raw materials and 

products are substitutes. 

 

3.3 Model Indices, Parameters, and Decision 

Variables 
These followings are model indices, parameters, and 

decision variables for mathematical formulation in the next 

sub section. 

Indices 

i  raw material; 1,2,…,I 

s  supplier; 1,2,…,S 

 

 

 

 

 

c  carrier; 1,2,…,C 

t  period; 1,2,…,T 

 

Parameters 

𝑼𝑪𝒊𝒔 unit price of raw material i supplied by 

supplier s  

𝑫𝒊𝒕 demand of raw material i in period t 

𝑶𝒊𝒔𝒕 order cost of raw material i for supplier 

s in period t 

𝑩𝒊𝒔𝒄𝒕 carrier cost c is used by supplier s to 

supply raw material i in period t 

𝑳𝒊𝒔𝒕 raw material i late delivery rate 

supplied by s in period t 

𝑷𝒍𝒊𝒔𝒕 raw material i late delivery penalty cost 

supplied by supplier s in period t 

𝑸𝒊𝒔𝒕 raw material i low quality rate supplied 

by supplier s in period t 

𝑷𝒒𝒊𝒔𝒕 raw material i low quality penalty cost 

i supplied by supplier s in period t 

𝑯𝑪𝒊𝒕 holding cost of raw material i in period 

t 

𝑰𝑨𝒊 inventory level of raw material i in 

initial period (t = 0) 

𝑪𝑪𝒊𝒔𝒄𝒕 carrier c capacity to supply raw 

material i used by supplier s in period t 

𝑪𝑺𝒊𝒔𝒕 supplier s capacity s to supply raw 

material i in period t 

𝑺𝑪𝒊𝒕 storage capacity of raw material i in 

period t 

𝒏𝒊𝒔𝒕 minimum order level of raw material i 

supplied by supplier s in period t 

according to management policy 

𝑴𝑶𝒊𝒔𝒕 minimum order level of raw material i 

supplied by supplier s in period t 

according to supplier requirement 

𝑴 a big number 

 

 

Decision Variables 

𝑿𝒊𝒔𝒄𝒕 amount of raw material i order supplied 

by supplier s using carrier c in period t  

𝑵𝒊𝒔𝒄𝒕 number of carrier c used by supplier s 

to supply raw material i in period t 

 

𝑰𝑵𝑽𝒊𝒕 inventory level of raw material i in 

period t 

𝑽𝒔𝒕 binary variable. 1 if supplier s is 

selected, 0 if otherwise 

 

 

3.4 Model Formulation 
According to model indices, parameters, and decision 

variables above, a mathematical formulation may be as 

stated as follows: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4 + 𝑍5 + 𝑍6                                                   (1) 

 

𝑍1 = ∑ ∑ ∑ ∑ 𝑋𝑖𝑠𝑐𝑡 ∗ 𝑈𝐶𝑖𝑠

𝑡𝑐𝑠𝑖

                                                   (1a) 

 

𝑍2 = ∑ ∑ ∑ 𝑂𝑖𝑠𝑡 ∗  𝑉𝑠𝑡

𝑡𝑠𝑖

                                                   (1b) 

 

𝑍3 = ∑ ∑ 𝐼𝑁𝑉𝑖𝑡  ∗ 𝐻𝐶𝑖𝑡

𝑡𝑖

                                                   (1c) 

 

𝑍4 = ∑ ∑ ∑ ∑ 𝑁𝑖𝑠𝑐𝑡 ∗ 𝐵𝑖𝑠𝑐𝑡

𝑡𝑐𝑠𝑖

                                                   (1d) 

 

𝑍5 = ∑ ∑ ∑ ∑ 𝑋𝑖𝑠𝑐𝑡 ∗ 𝐿𝑖𝑠𝑡 ∗ 𝑃𝑙𝑖𝑠𝑡

𝑡𝑐𝑠𝑖

                                                   (1e) 

 

𝑍6 = ∑ ∑ ∑ ∑ 𝑋𝑖𝑠𝑐𝑡 ∗ 𝑄𝑖𝑠𝑡 ∗ 𝑃𝑞𝑖𝑠𝑡

𝑡𝑐𝑠𝑖

                                                   (1f) 

Subject to 

∑ ∑ 𝑋𝑖𝑠𝑐𝑡  

𝑐𝑠

+ 𝐼𝐴𝑖𝑡 ≥ 𝐷𝑖𝑡                   ∀𝑖 = 1, … , 𝐼; ∀𝑡 = 1 

∑ ∑ 𝑋𝑖𝑠𝑐𝑡  

𝑐𝑠

+ 𝐼𝑁𝑉𝑖(𝑡−1) ≥ 𝐷𝑖𝑡           ∀𝑖 = 1, . . . , 𝐼;  ∀𝑡 ≠ 1 

 

∑ ∑ 𝑋𝑖𝑠𝑐𝑡  

𝑐

− ∑ ∑ 𝑋𝑖𝑠𝑐𝑡 ∗  𝐿𝑖𝑠𝑐𝑡

𝑐

+

𝑠𝑠

𝐼𝐴𝑖 

= 𝐷𝑖𝑡 + 𝐼𝑁𝑉𝑖𝑡       ∀𝑖 = 1, . . . , 𝐼 ;  ∀𝑡 = 1 

 

∑ ∑ 𝑋𝑖𝑠𝑐𝑡  

𝑐

− ∑ ∑ 𝑋𝑖𝑠𝑐𝑡 ∗  𝐿𝑖𝑠𝑐𝑡

𝑐

+

𝑠𝑠

∑ ∑ 𝑋𝑖𝑠𝑐(𝑡−1) ∗  𝐿𝑖𝑠𝑐(𝑡−1)

𝑐

+ 𝐼𝑁𝑉𝑖(𝑡−1)

𝑠

= 𝐷𝑖𝑡 + 𝐼𝑁𝑉𝑖𝑡         ∀𝑖 = 1, . . . , 𝐼 ;  ∀𝑡 ≠ 1 

 

𝑋𝑖𝑠𝑐𝑡 ≤ 𝑁𝑖𝑠𝑐𝑡 ∗ 𝐶𝐶𝑖𝑠𝑐𝑡       
∀𝑖 = 1, . . , 𝐼;  ∀𝑠 = 1, . . . , 𝑆; ∀𝑐 = 1, … , 𝐶; ∀𝑡 = 1, . . , 𝑇 

 

∑ 𝑋𝑖𝑠𝑐𝑡 

𝑐

≤ 𝐶𝑆𝑖𝑠𝑡                     ∀𝑖 = 1, . . , 𝐼;  ∀𝑠 = 1, . . . , 𝑆; ∀𝑡 = 1, . . , 𝑇 

 

∑ ∑ 𝑋𝑖𝑠𝑐𝑡

𝑐𝑖

≤ 𝑀 ∗ 𝑉𝑠𝑡           ∀𝑠 = 1, . . , 𝐼;  ∀𝑡 = 1, . . , 𝑇 

 

𝐼𝑁𝑉𝑖𝑡 ≤ 𝑆𝐶𝑖𝑡                             ∀𝑖 = 1, . . , 𝐼;  ∀𝑡 = 1, . . , 𝑇 

 

∑ 𝑋𝑖𝑠𝑐𝑡 

𝑐

≥ 𝑛𝑖𝑠𝑡 ∗ 𝐷𝑖𝑡             ∀𝑖 = 1, . . , 𝐼;  ∀𝑠 = 1, … , 𝑆;  ∀𝑡 = 1, . . , 𝑇 

 

∑ 𝑋𝑖𝑠𝑐𝑡 

𝑐

≥ 𝑀𝑂𝑖𝑠𝑡                  ∀𝑖 = 1, . . , 𝐼;  ∀𝑠 = 1, . . . , 𝑆; ∀𝑡 = 1, . . , 𝑇 

 

𝑋𝑖𝑠𝑐𝑡, 𝑁𝑖𝑠𝑐𝑡  ≥ 0 and integer 

∀𝑖 = 1, . . , 𝐼;  ∀𝑠 = 1, . . . , 𝑆;  ∀𝑐 = 1, … , 𝐶; ∀𝑡 = 1, . . , 𝑇  

 

𝑉𝑠𝑡 ∊ {0,1}                                ∀𝑠 = 1, . . , 𝐼;  ∀𝑡 = 1, . . , 𝑇 

 (2a) 

(2b) 

 (5) 

(6) 

(7) 

 (8) 

 

 

 (9) 
 

(11) 

 (4) 

(10) 

 

(3a) 

(3b) 
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The objective function (1) is to minimize purchasing 

cost (1a), order cost (1b), inventory holding cost (1c), carrier 

cost (1d), late delivery penalty cost (1e), and low-quality 

penalty cost (1f). In this proposed model, there are several 

constraints. The demand fulfillment constraint (2a and 2b) is 

to ensure demand each period is fulfilled. Inventory balance 

constraint (3a and 3b) states balance of inventory level in 

period t. This constraint also to ensure the demand in period 

t is fulfilled by inventory level in period t and the amount of 

late order in period t-1. Carrier capacity constraint (4) is to 

ensure the amount of order not exceed the capacity of carrier. 

This constraint also decides number of carriers needed. 

Supplier capacity constraint (5) states the amount of order is 

not to be allowed to exceed supply capacity of supplier. 

Ordering cost constraint (6) is to ensure order cost applied if 

the supplier is selected. Storage capacity constraint (7) is to 

ensure the amount of order not exceed buyer storage 

capacity. Management policy constraint (8) is to ensure 

every supplier receives minimum order according to 

management company policy. Supplier requirement 

constraint (9) is to ensure minimum order must be greater 

equal than supplier requirements. Constraint number 10 

forces integer and non-negativity value. Finally, constraint 

number 11 is a binary variable constraint. 

4. EXPERIMENTAL DATA 
In section 4, we discuss how the proposed model 

demonstrated through data experiment. Data from real-world 

case in a cement industry is collected. It aims for illustrating 

how the model gain the solution. In cement production, a 

cement company needs some types of raw materials. They 

are limestone, clay, iron sand, silica sand, trass, and gypsum. 

Limestone and clay are usually mined from the company 

quarry itself. In this selected cement company, the gypsum 

must be purchased from single dedicated supplier. The rest 

of raw materials which are iron sand, silica sand, and trass, 

must be purchased from specific different suppliers. These 

suppliers are multiple dedicated suppliers. It means, based on 

management company policy, a whole aggregate order must 

be split into all suppliers. The result of field observation, iron 

sand is supplied by supplier D and E, trass is fulfilled by 

supplier F, G, and H, then silica sand is purchased from 

supplier M, N, and O. Figure 2 depicts which suppliers 

fulfill what raw materials. 

 

 

 

 

 

 
Figure 2 Raw material supplier 

 

Data collection is started from unit price of raw 

materials to minimum order level as stated as in the previous 

section. We put the data into the parameter of the proposed 

model. All gathered data is assumed has no change along 

time horizon. A whole data parameter can be referred at 

Appendix. 

We experiment parameter of raw material late delivery 

rate (List) and raw material low quality rate (Qist) as 

uncertainty factors before running the full mathematical 

model into optimization software called Lingo. Monte Carlo 

simulation is applied to imitate and to simulate the pattern of 

supplier delivery performance and product quality based on 

historical data. The result of the simulation effects on the 

amount of penalty cost suppliers must pay to the company. 

We divide the late delivery penalty cost into three events. It 

depends on the amount of supplier delivery that is sent on 

time according to the company order. The first event is no 

penalty applied, which means all the raw material completely 

delivered on time. The second event is if the supplier could 

only deliver 50% to 99% of raw materials ordered on the 

right time, they may be charged 2.5% penalty. Maximum 

penalty 5% is applied, if the suppliers send under 50% of raw 

materials ordered on schedule. We count the frequency of 

events according to the delivery performance from historical 

data. Then, we convert the frequency distributions to 

cumulative frequency/probability distributions. Put the 

interval of random numbers on each event. Tersine (1994) 

states sample at random from the cumulative probability 

distributions to determine specific variable values to use in 

the simulation. For instance, Table 2 shows the result of 

supplier D late delivery rate distribution. 

 
Table 2 Supplier D late delivery rate distribution 

Penalty 
Event 

Frequency 
Cum. 
Freq 

% 
Freq 

% 
Cum. 
Freq 

Random 
Numbers 

No Penalty 22 22 63% 63% 01-63 

Penalty 2.5% 2 24 6% 69% 64-69 

Penalty 5% 11 35 31% 100% 70-100 

 

We do over the prior step each raw material for all 

suppliers. The key result from example illustration in Table 

2 is the value of random numbers that will determine supplier 

delivery performance. Random numbers between 0 to 100 

range are generated using spreadsheet for four periods. The 

result of generated random numbers will be matched to the 

random numbers in accordance with each supplier late 

delivery rate distribution. Table 3 shows the result of Monte 

Carlo simulation delivery rate all suppliers for four periods. 

It will be an input in the mathematical formulation for 

parameter List.  

 

Supplier D

Supplier E

Iron sand Trass

Supplier F

Supplier G

Supplier H

Supplier M

Supplier N

Supplier O

Silica sand
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Table 3 Late delivery penalty monte carlo simulation 

Period 1 2 

Supplier D E F G H M N O D E F G H M N O 

Random Numbers 73 91 25 17 75 30 65 85 31 36 20 58 87 16 2 21 
Penalty 2,5% 5% 0% 0% 2,5% 0% 3% 5% 0% 0% 0% 3% 5% 0% 0% 0% 

 Period 3 4 

Supplier D E F G H M N O D E F G H M N O 

Random Numbers 41 53 82 82 82 79 96 82 70 78 60 44 23 13 23 69 
Penalty 0% 0% 5% 3% 5% 3% 5% 3% 2,5% 5% 3% 0% 0% 0% 0% 3% 

Another uncertainty factor as mentioned earlier is 

product/raw material quality rate. The company owns raw 

material quality standard as shown as Table 4. A raw 

material has two chemical parameters that must be met. If 

the suppliers deliver raw materials that do not meet the 

quality standard, they will be charged. The amount of penalty 

charge is measured from the quality range of product 

delivered by the supplier to the quality standard.  
 

Table 4 Raw material quality standard 

Raw Material Parameter Standard 

Iron sand 
Fe2O3 Min 50% 
H2O Max 5% 

Trass 
SiO2 + R2O3 Min 75% 
H2O Max 10% 

Silica sand 
SiO2 Min 90% 

H2O Max 6% 

 

Historical data of raw material quality rate is collected 

from all suppliers. We analyze the data using statistics 

descriptive in a spreadsheet. The output is used to calculate 

the number of class interval (k) and the size of class interval 

(p) in Sturges Rules formula. According to Brkic (1991) the 

formula is  

𝑘 = 1 + 3,3 log 𝑛 (12) 

𝑝 =
𝑅

𝑘
 (13) 

 

Where n express the total number of observations the 

dataset and R is the data ranges. 

The result of calculation will be used to set the lower 

bound and the upper bound in making the frequency 

distributions and cumulative frequency/probability 

distributions. The frequency distributions value is obtained 

from how often those value emerge in between the lower 

bound and the upper bound data observation ranges. Then, 

we put the interval of random numbers on every class 

interval. For example, Table 5 shows the result of iron sand 

quality distribution for parameter Fe2O3 delivered by 

supplier D. 

 

 

Table 5 Iron sand quality distribution for parameter Fe2O3 

Lower Bound Upper Bound Median Frequency Cum. Freq % Freq % Cum. Freq  Random Numbers 

33,89 39,61 36,75 3 3 2% 2% 01-02 

39,62 45,34 42,48 3 6 2% 4% 03-04 

45,35 51,07 48,21 6 12 4% 9% 05-08 

51,08 56,80 53,94 8 20 6% 14% 09-13 

56,81 62,53 59,67 73 93 52% 66% 14-65 

62,54 68,26 65,40 32 125 23% 89% 66-88 

68,27 73,99 71,13 8 133 6% 95% 89-94 

74,00 80,12 77,06 7 140 5% 100% 95-100 

Table 6 Low quality penalty monte carlo simulation 

Supplier D E 

Period 1 2 3 4 1 2 3 4 

Random Numbers (Fe2O3) 62 93 51 90 73 72 51 13 
Quality Rate Simulation (Fe2O3) 59,67% 71,13% 59,67% 71,13% 59,25% 59,25% 59,25% 48,89% 

Random Numbers (H2O) 60 7 15 65 14 16 38 31 
Quality Rate Simulation (H2O) 5,66% 3,20% 4,02% 5,66% 3,89% 4,41% 4,93% 4,41% 

Penalty (Fe2O3) -  - - -  -  - - 1,11% 

Penalty (H2O) 0,66% - - 0,66% - - - - 

Low Quality Rate (Fe2O3 + H2O) 0,66% 0,00% 0,00% 0,66% 0,00% 0,00% 0,00% 1,11% 

We repeat the previous step each raw material in every 

parameter quality for all suppliers. The key point from Table 

5 is the value of random numbers in every class interval. 

Random numbers between 0 to 100 range are generated 

using spreadsheet for four periods. The result of generated 

random numbers will be matched to the random numbers 

under each supplier’s raw material quality distributions. 

Table 6 shows the result of the example Monte Carlo 

simulation in low quality rate for supplier D and supplier E. 

This result as an input in the mathematical formulation for 

parameter Qist. 

As a multiple dedicated suppliers problem, we discuss 

the minimum percentage for order to the suppliers with the 

company management. This is to fulfill the data of 

management policy constraint (nist). The constraint is a 

distinctive constraint. It makes the order must be divided to 

all suppliers because of the suppliers have a high bargaining 

power to the company. So, the company decide to keep 

ordering yet as minimum as possible. We also ask to the 
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suppliers to determine the minimum order, as stated as in 

supplier requirement constraint (constraint number 9), that 

they required. Table 7 shows raw material minimum order 

each supplier according to the buyer management policy and 

supplier requirements. 

 
Table 7 Raw material minimum order 

Raw Material Supplier 
Management 
Policy (% of 

Demand) 

Supplier 
Requirements 

(Ton) 

Iron sand D 40% 1500 
 E 40% 3000 

Trass F 25% 3000 

 G 25% 5000 

 H 25% 3500 

Silica sand M 30% 3000 
 N 30% 4000 
 O 30% 3500 

 

All completed data parameters are inputted into the 

model in the spreadsheet. We run the full model in Lingo 

11.0.0.20 to satisfy raw materials demand shown in Table 8. 

The total demand for iron sand is 25700 ton, trass is 105.470 

ton, and silica sand is 107810 ton. The demands are for four 

periods. The specification computer that we used is AMD 

Ryzen 7 2700U CPU Processor and 8 GB RAM. 

 
Table 8 Raw materials demand (ton) 

Raw Material 
Period 

1 2 3 4 

Iron sand 5.900 3.500 8.150 8.150 

Trass 19.970 23.250 30.000 32.250 

Silica sand 26.110 15.470 36.110 30.120 

 

The result of software optimization shows a global 

optimum solution has been found. The value of objective 

function on this case is IDR 57,8 billion. Z1 (purchasing 

cost) is IDR 29,1 billion, Z2 (order cost) is IDR 3,8 billion, 

Z3 (inventory holding cost) is IDR 0,15 billion, Z4 (carrier 

cost) is IDR 23,9 billion, Z5 (late delivery penalty cost) is 

IDR 0,52 billion, and Z6 (low-quality penalty cost) is IDR 

0,27 billion.  All developed constraints are fully satisfied. All 

multiple dedicated suppliers supply the raw materials. 

The total amount of order for iron sand is 22900 ton, 

trass 106408 ton, and silica sand is 108894 ton. It is for four 

periods. As we know, the total amount of iron sand is lower 

than the demand as mentioned earlier. This is because the 

inventory level of iron sand in initial period (IAit) is greater 

than zero, which is 4.818 ton. Otherwise, since trass and 

silica have no initial inventory level (IAit), the total amount 

of order for trass and silica sand are lesser than the demand. 

Table 9 and Table 10 show the details of the decision 

variables, which the result from the optimization.
 

Table 9 Optimization result of decision variables (Xisct and Nisct) 

   Xisct  Nisct 

Raw Material Supplier Carrier 
Period  Period 

1 2 3 4  1 2 3 4 

Iron sand D C1 20 0 20 20  1 0 1 1 
  C2 2.340 1.500 3.240 3.240  78 50 108 108 
 E C1 0 0 20 20  0 0 1 1 
  C2 3.000 3.000 3.240 3.240  100 100 108 108 

Trass F C3 5.000 19.912 7.504 8.064  625 2489 938 1.008 
  C4 0 0 0 0  0 0 0 0 
  C5 0 0 0 0  0 0 0 0 
 G C3 0 0 0 0  0 0 0 0 
  C4 10.096 5.816 7.512 8.064  1.262 727 939 1.008 
  C5 0 0 0 0  0 0 0 0 
 H C3 0 0 0 0  0 0 0 0 
  C4 5.000 5.816 7.504 16.120  625 727 938 2.015 
  C5 0 0 0 0  0 0 0 0 

Silica sand M C3 0 0 0 0  0 0 0 0 
  C4 11.024 4.648 10.840 9.048  1.378 581 1.355 1.131 
  C5 0 0 0 0  0 0 0 0 
 N C3 0 0 0 0  0 0 0 0 
  C4 7.840 10.256 10.840 9.040  980 1.282 1.355 1.130 
  C5 0 0 0 0  0 0 0 0 
 O C3 0 0 0 0  0 0 0 0 
  C4 7.838 4.648 10.840 12.032  980 581 1.355 1.504 
  C5 0 0 0 0  0 0 0 0 

 

In Table 9, the optimization result of the decision 

variables is provided. The amount of raw material i order 

supplied by supplier s using carrier c in period t is notated by 

Xisct. In total, supplier D supplies 10.380 ton and supplier E 

supplies 12.250 ton of iron sand. To fulfill the demand of 

trass, the buyer order from supplier F of 40480 tons, supplier 

G of 31.488 ton, and supplier H of 34.440 ton. The silica sand 

order is divided to supplier M of 35560 tons, supplier N of 

37.976 ton and supplier of O of 35.358 ton. In the next 

column of Xisct in Table 9, there is also provided Nisct. This 

decision variable shows the number of carriers needed. 

Supplier D needs 3 units of 20 ton truck capacity (C1) and 

344 units of 30 ton truck capacity (C2) to supply iron sand in 

total. Supplier E, as also an iron sand supplier, requires 2 
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units of C1 and 416 units of C2 for four periods. Supplier F 

merely needs 5.060 units of 8 ton truck capacity (C3) to 

deliver all trass order. Supplier G and supplier H need less 

carrier than supplier F to fulfill the order. Supplier G needs 

3.936 units of 8 ton truck capacity (C4) and supplier H 

requires 4.305 units. All suppliers of silica sand need C4, 

which is the truck with 8 ton capacity, to carry all their 

orders. Supplier M requires 4.445 units, supplier N needs 

4.747 units, and supplier O should prepare 4.420 units to 

deliver the order. Details of Xisct and Nisct in every period 

can be traced in Table 9. The developed model also 

optimizes the inventory level of raw material i in period t. It 

is notated by INVit. This decision variable aims to determine 

the amount of inventory that must be stored to meet the 

demands. Table 10 shows the optimization result of INVit 

decision variable. 

 

Table 10 Optimization result of decision variable (INVit) 

Raw Material 
Period 

1 2 3 4 

Iron sand 4.069 5.278 3.648 1.774 
Trass 1,2 7.984 2 737 

Silica sand 4,1 4.674 0 784 

 

The optimum inventory level in the last period for iron 

sand is 1774 ton, trass is 737 ton, and silica sand is 784 ton. 

Inventory level can not to be summed over periods, so we 

count the average of inventory level. This is because the 

inventory level in period t affects the number of orders for 

period t + 1. The result of inventory level average is 3.962 

ton for iron sand, 2.181 ton for trass, and 1.365 ton for silica 

sand. 

5. CONCLUSION 
In today’s business competition, a proper supply chain 

management practice offers the opportunity to reduce costs 

and improves the company's competitiveness. As a part of 

practices, supplier selection and order allocation process 

have important roles. A structured and comprehensive 

method may be needed to optimize the value. A conceptual 

model that provided in this paper attempts to build the order 

allocation in multi products, multi suppliers, multi carriers, 

and multi periods problem under uncertainty more structured 

and comprehensive. This study also develops a mathematical 

formulation properly in MILP model to optimize the supply 

chain costs as an objective function. Monte Carlo simulation 

applies to the model to overcome the uncertainty issue in 

supplier delivery performance and product quality. The 

proposed model that experimented in real-world case 

successfully provided a global optimum solution. The 

research contributes to provide a powerful guide for 

company decision makers in determining supplier selection 

and order allocation. Future research should add more 

relevant variables to provide a solution for more complex 

problems. A sensitivity analysis is necessary to be 

considered to find out the impact of changes in uncertainty 

variables on the result of the models. Furthermore, because 

of software capability, more complex problems will 

consume much time. A heuristic method should be proposed 

to overcome this issue. 
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APPENDIX 1: COSTS (IDR), STORAGE CAPACITY (TON) AND INITIAL 

INVENTORY LEVEL (TON) 

Raw Material 
Unit Cost Order Cost Late Del Penalty Cost Low Qual Penalty Cost Holding Cost Storage Capacity Initial Inv 

IDR IDR IDR IDR % Ton Ton 

Iron sand 425.000 118.520.800 425.000 425.000 2% 15000 4818 

Trass 85.000 119.270.800 85.000 85.000 2% 40000 0 

Silica sand 95.000 119.770.800 95.000 95.000 2% 45000 0 

 

 

APPENDIX 2: CARRIER COSTS (IDR) 

Raw Material 
Supplier D Supplier E Supplier F Supplier G, H, M, N, and O 

C1 C2 C1 C2 C3 C4 C5 C3 C4 C5 

Iron sand 10.500.000 12.000.000 10.500.000 12.000.000       

Trass     548.000 1.800.000 3500000 432.000 548.000 1.800.000 

Silica sand        432.000 548.000 1.800.000 

 

 

APPENDIX 3: CARRIER CAPACITY (TON) 

Raw Material 
Supplier D Supplier E Supplier F Supplier G, H, M, N, and O 

C1 C2 C1 C2 C3 C4 C5 C3 C4 C5 

Iron sand 20 30 20 30       

Trass     8 15 30 5 8 15 

Silica sand        5 8 15 
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APPENDIX 4: SUPPLIER CAPACITY AND MINIMUM ORDER (TON) 

Raw Material Supplier 
Supplier Capacity Minimum Order 

 

Raw Material Supplier 

Supplier 
Capacity 

Minimum 
Order 

Ton Ton  Ton Ton 

Iron sand D 9000 1500  Silica sand M 40000 3000 
 E 9500 3000   N 38000 4000 

Trass F 35000 3000   O 39000 3500 
 G 33000 5000      
 H 34000 3500      

 

APPENDIX 5: MONTE CARLO SIMULATION 
  Late Delivery  Low Quality 

Raw Material Supplier 1 2 3 4  1 2 3 4 

Iron sand D 2,50% 0,00% 0,00% 2,50%  0,66% 0,00% 0,00% 0,66% 
 E 5,00% 0,00% 0,00% 5,00%  0,00% 0,00% 0,00% 1,11% 

Trass F 0,00% 0,00% 5,00% 2,50%  2,08% 1,00% 0,00% 2,37% 
 G 0,00% 2,50% 2,50% 0,00%  0,00% 0,10% 0,10% 1,65% 
 H 2,50% 5,00% 5,00% 0,00%  1,20% 0,00% 0,00% 0,00% 

Silica sand M 0,00% 0,00% 2,50% 0,00%  0,01% 1,35% 0,01% 3,17% 
 N 2,50% 0,00% 5,00% 0,00%  1,35% 0,27% 3,18% 3,18% 
 O 5,00% 0,00% 2,50% 2,50%  3,25% 1,08% 4,25% 0,28% 

 

APPENDIX 6: OBJECTIVE FUNCTION (IN MILLION IDR) 
Z1 Z2 Z3 Z4 Z5 Z6 Total 

29.122 3.817 151 23.291 525 273 57.808 
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