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ABSTRACT 
This study investigates optimal inventory positioning in 

multi-stage supply chains by utilizing a mixed-integer nonlinear 

programming model that incorporates a scenario-based 

disruption delay, and the subsequent expediting to mitigate 

inventory shortages. The goal is to determine the amount and 

positioning of inventory in the supply chain to minimize the 

total inventory and expediting costs, subject to meeting 

customer service requirements. Discretization techniques are 

applied to linearize non-convex objective functions and 

reformulate the problem as an equivalent mixed-integer linear 

programming, which can be solved by the standard solvers. To 

demonstrate the model, numerical experiments are conducted 

to determine the optimal solution under different disruption 

scenarios. These experiments provide interesting insights 

regarding inventory decisions that can serve as guidelines for 

building resilience in the supply chain. 

 

Keyword: inventory management, safety stock positioning, 

supply chain disruption, supply chain risk management 

1. INTRODUCTION 
Supply chain disruptions are caused by many natural 

and man-made events. The effects of these disruptions range 

from minor problems to bankruptcy and company closures 

(Shih 2020; Laato et al. 2020). As offshoring and 

globalization of manufacturing operations has grown in 

recent years, supply chains have become longer, more 

complex and geographically more diverse. Therefore, 

companies are more exposed to a variety of risks that can 

disrupt their operations (Simchi-Levi 2010, Wagner et al. 

2014, Bode and Macdonald 2017, García-Arca et al. 2020, 

Liu et al. 2020, Ivanov and Dolgui 2020, Baghersad and 

Zobel 2021, Dolgui and Ivanov 2021).   

Holding redundant inventory is one strategy to mitigate 

disruptions (Snyder et al. 2016, Pereira et al. 2020, Dolgui 

and Ivanov 2021, Taleizadeh et al. 2021). This strategy is 

often referred to as a just-in-case strategy, as opposed to a 

just-in-time strategy (Sheffi 2007). For example, in March 

2011 a tsunami struck Japan resulting in the collapse of the 

Toyota’s supply chain. After the tsunami, most of Toyota’s 

Japanese plants were closed for nearly two months. In 

addition, Toyota’s North American production was cut down 

to 30% percent in the subsequent six (6) months due to a 

shortage of 150 different parts to be produced in Toyota’s 

Japanese plants (Canis 2011). Toyota experienced a 77% 

drop in profits in the second quarter of 2011, equivalent to 

$1.36BN (MacKenzie et al. 2014). To be able to mitigate 

risks in case of future events of this type and magnitude, 

many Japanese automakers, including Toyota, started to hold 

a few months’ worth of redundant inventory within their 

supply chains (Yoon et al. 2020, Li et al. 2021). However, 

as with other risk mitigation strategies, holding redundant 

inventory is costly. Digressing from just-in-time to just-in-

case inventory management might be detrimental to product 

quality and to lean operations in general (Sheffi and Rice 

2005, Zhang et al. 2018). Therefore, companies must 

carefully balance the trade-off between mitigation costs and 

supply chain disruption risks.  

In a multi-echelon supply chain, the key questions are 

where and how much inventory are needed to meet customer 

requirements in normal times and during disruptions. 

However, these decisions are complex due to multiple 

factors, including the location and the probability of 

disruptions, delays during disruptions, the inventory unit cost 

at each stage and the cost of the post-disruption action. This 

makes it difficult to properly answer the where and how 

much inventory is needed questions and therefore, the best 

mitigation strategy. Given these difficulties, many 

companies tend to make sub-optimal decisions that result in 

excess inventories at several stages of the supply chain, 

holding inventories in the wrong locations or experiencing 

stock-outs and losing customers (Marcucci et al. 2021). 

This paper supports decision-making in determining 

the right amount and the correct positioning of safety stocks 

to protect a serial supply chain from delay disruption. The 

decision variables are the lead times between stages because 

they form the basis for setting inventory targets. The 

inventory target for each stage is calculated by the amount 

that covers the net lead time. Net lead time is defined by 

subtracting the outbound lead time from the sum of the 

inbound lead time and processing time. In other words, one 

lead time affects the inventory target of the previous and the 

next processes. This is determined from the perspective of 
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global optimality. In each stage, a delay occurs in the lead 

time with a probability for this delay (the disruption). If the 

inventory is insufficient dudelay; delay, expediting is 

performed as a post-disruption action to meet the service 

commitment. Unlike some of the previous work, the 

proposed model does not allow for backorders. This is 

consistent with a risk management perspective that considers 

measures in advance according to each scenario and 

establishes a system that can continue supply rather than 

accept the risk, and thus backorder (which assumes units will 

be available at a later time, after the delay is resolved). For 

some industries such as medical devices and 

pharmaceuticals, it would not be acceptable to “plan for” 

shortages and therefore, mitigation plans should be in place 

to continue supply even if extra costs are incurred. In such 

situations, the expediting approach considered in this study 

is more suitable. 

The objective function is to minimize the expected cost, 

which is the sum of the inventory and the expediting costs. 

Since inventory cost is expressed as a concave function to 

express inventory pooling, this problem is a non-convex 

optimization problem. Discretization techniques are applied 

to linearize non-convex objective functions and reformulate 

the problem as mixed-integer linear programming, which 

can be solved by the standard solvers. 

Numerical experiments were conducted in a 4-stage 

serial supply chain. In these experiments two types of supply 

chains that are characterized by the value added at each stage 

are compared. The experiments include several sensitivity 

analyses that consider factors related to the disruption 

probability, the location of the disruption and the cost 

structure. The following questions are addressed: 

 How does the position and quantity of inventory held 

differ depending on the added value of each stage? 

 How does the total cost differ depending on where the 

delay caused by the disruption occurs? 

 Under what conditions should we stock and expedite in 

order to mitigate the delay?  

The remainder of this paper is organized as follows. In 

Section 2, we review inventory mitigation literature for both 

single-echelon, and multi-echelon supply chains and discuss 

the contributions of this study. In Section 3, we present the 

proposed model to optimize inventory quantity and 

positioning in order to minimize the expected inventory 

holding and expediting costs under the presence of scenario-

based delays. In Section 4, we present a thorough sensitivity 

analysis that considers multiple relevant factors. Finally, in 

Section 5 we present the results of the study and discuss 

future research directions. 

2. LITERATURE REVIEW 
In the past decade, academics and practitioners have 

become increasingly interested in the impact of supply chain 

disruptions, and relevant literature on the topic has increased 

significantly (Snyder et al. 2016, Xu et al. 2020). There are 

several review papers on disruption management, with, 

Snyder et al. (2016), Xu et al. (2020), Dolgui and Ivanov 

(2021) being three of the most recent works. In this study, 

we specifically review papers on inventory management 

under disruption. Section 2.1 discusses the single-echelon 

model, Section 2.2 describes the multi-echelon model, while 

Section 2.3 presents the contributions of this research. 

2.1 Single-echelon Inventory Models under 

Disruption 
Several papers study the optimal replenishment policy 

under disruption for the single-echelon inventory system, 

which determines when, from whom and how much to order. 

One research stream is to incorporate these disruptions into 

the economic order quantity (EOQ) model. Parlar and Berkin 

(1991) incorporated disruption into the EOQ model. In this 

study, the problem of determining the optimal order quantity 

during normal times and disruptions at random time intervals, 

is modeled. This model is referred to as the EOQD model. 

Berk and Arreola-Risa (1994) modified the model developed 

by Parallel and Berkin (1991) to derive a memoryless model 

in which normal and disrupted periods follow an exponential 

distribution. Weiss and Rosenthal (1992) developed an 

optimal inventory policy for EOQ inventory systems which 

may have a disruption in either supply or demand. Bar-Lev 

et al. (1993) extended the EOQD model under the 

assumption that the inventory level process is a Brownian 

motion with negative drift. Parlar and Perry (1996), and 

Gurler and Parlar (1997) extended the model into a multi-

supplier setting. Parlar (2000) was able to provide a complete 

description of the cycle-related random variables for a 

stochastic inventory problem with supply interruptions. Ross 

et al. (2008) considered a dynamic environment: the 

probability of a disruption, as well as the demand intensity, 

can be time-dependent. Qi et al. (2009) extended the EOQD 

model to include disruptions at the supplier and at the firm 

itself. Snyder (2014) proposed a tight approximation for a 

continuous review inventory model with supplier disruptions. 

Bakal et al. (2017) proposed a model that allows buyers to 

place a disruption order based on disruption information. In 

a numerical experiment, they compared the case where there 

was no disruption order and discussed the value of disruption 

information. Konstantaras et al. (2019) studied the periodic 

review base stock (S, T) policy, which has an identical 

structure of EOQ with backorders. 

Another modeling approach is the stochastic inventory 

system with disruption. Parlar et al. (1995) analyzed a (Q, r, 

T) inventory policy with deterministic and random yields 

when future supply is uncertain. Gupta (1996) studied the 

impact on operating costs of having an unreliable supplier in 

a continuous review (Q, r) policy. Song and Zipkin (1996) 

presented an inventory control model where the 

replenishment lead time changes over time. They proposed 

that the optimal policy has the same structure as in standard 

models, but its parameters change dynamically to reflect 

current supply conditions. They show that a longer lead time 

does not necessarily imply more inventory. Kalpakam and 

Sapna (1997) analyzed an environment-dependent (s, S) 

inventory system with renewal demands and lost sales where 

the environment goes through available and unavailable 

periods according to a two-state Markov chain. Moinzadeh 

and Aggarwal (1997) studied an unreliable bottleneck 

production/inventory system with a constant production and 

demand rate that is subject to random disruptions, and 

proposed an (s, S) production policy for such systems. Parlar 

(1997) proposed an ordering policy where the standard (q, r) 

policy is used when the supplier is available (ON), and as 

soon as the supplier is recovered, one orders enough to bring 

the inventory position up to the target level, when the 

supplier is unavailable (OFF). Arreola-Risa and DeCroix 
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(1998) proposed a modified (s, S) policy that if the inventory 

level is at or below s and the supply is available, an order is 

placed to bring the inventory level up to S. Ozekici and Parlar 

(1999) considered infinite-horizon periodic review inventory 

models with unreliable suppliers where the demand, the 

supply, and the cost parameters change with respect to a 

randomly changing environment. They show that a two-

parameter, environment-dependent (s, S) policy is optimal. 

Gullu et al. (1999) analyzed a periodic review of the single-

item inventory model under supply uncertainty with the 

objective of minimizing expected holding and backorder 

costs over a finite planning horizon under the supply 

constraints. Li et al. (2004) considered a periodic review 

inventory system subject to random demand and unreliable 

supply. The availability of supply is modeled as an 

alternating renewal process with general distributions for the 

duration of the UP and DOWN cycles. Mohebbi and Hao 

(2008) studied an unreliable supplier in a single-item 

stochastic inventory system that alternates randomly 

between two possible states (i.e., available and unavailable) 

following a two-state continuous time homogeneous Markov 

chain. Lewis et al. (2013) studied inventory management in 

global supply chains facing port-of-entry disruption risks and 

an infinite-horizon periodic review inventory control model 

is developed to determine the optimal average cost ordering 

policies under linear ordering costs with backlogged demand. 

Saithong and Lekhavat (2020) studied an optimal base-stock 

level with disruption and partial backlogging. They derived 

a closed-form expression of the optimal base-stock level that 

depends on the disruption duration. Taleizadeh et al. (2021) 

analyzed the effects of supply disruptions in a base stock (S, 

T) periodic review policy, in which the effect of disruptions 

on optimal review interval are considered, and supply 

disruption length is modeled as a discrete variable. 

There are several single-echelon and finite-period 

approaches that consider inventory decisions. Kamalahmadi 

and Parast (2017) compared three mitigation strategies: pre-

positioning inventory, backup suppliers and protected 

suppliers. Considering supply and environmental risks, they 

developed a two-stage mixed-integer programming model 

by utilizing the decision tree approach. Lucker et al. (2019) 

studied the integrated decision making of inventory and 

reserve capacity. They compared four strategies: inventory 

strategy, reserve capacity strategy, mixed strategy and 

passive acceptance. They clarified the selection conditions 

for each strategy according to product and supply chain 

characteristics. Karu and Singh (2020) studied disaster 

resilient proactive and reactive procurement models for 

humanitarian supply chains. They proposed a three-phase 

model. In the first phase, the resilient scores of suppliers are 

evaluated using the integrated DEMATEL and fuzzy-

TOPSIS approach. In the second phase, the proactive model 

for the disaster resilient procurement is solved, in which the 

optimal procurement portfolio and inventory are determined. 

In the third phase, the reactive model is solved after the 

disruption is occurred. 

 

2.2 Multi-echelon Inventory Models under 

Disruption 
Several papers have studied multi-echelon inventory 

models with disruption. Kull and Closs (2008) demonstrated 

the interaction of inventory and supply risk on system 

performance for a two-echelon supply chain with a second-

tier supply failure. Simulation modeling was used to 

understand the interactive impact of factors within given 

scenarios, demonstrating that increased inventory levels do 

not necessarily reduce the overall supply chain risks. Wu et 

al. (2010) proposed a performance evaluation model for a 

serial multi-echelon inventory system that considers 

backordering and lost sales. They proposed a Marko-chain 

modeling to evaluate the exact expected cost for a single-

stage model and expand it to a multi-stage model with the 

approximated expected cost. Schmitt (2011) studied the best 

mix of multiple strategies to protect a supply chain from a 

disruption. The strategies include satisfying demand from an 

alternate location in the network, procuring material or 

transportation from an alternate source or route, and holding 

strategic inventory reserves throughout the network. They 

modeled the expected cost involving an inventory holding 

cost, a fixed cost to implement an option and a variable cost 

to reduce the response time, while satisfying service level 

commitments. DeCroix (2013) considered an assembly 

system with a single end product and a general assembly 

structure, where one or more of the component suppliers or 

(sub)assembly production processes is subject to random 

supply disruptions. They showed that a base-stock policy is 

not optimal. 

He et al. (2013) introduced an alternate inventory 

policy and a heuristic to optimize its parameters. 

Computational tests suggest that their policy outperforms 

that of DeCroix (2013). He and Snyder (2013) considered a 

general distribution system (not restricted to two echelons) 

under disruption risk. Pal et al. (2014) studied a three-stage 

production-inventory system of suppliers, manufacturers and 

retailers in situations where disruptions occur. They studied 

optimal order batching decision-making in situations where 

disruption and machine breakdown occur at the same time. 

Yildiz et al. (2016) proposed a network design that considers 

the two objectives of cost minimization and reliability 

maximization. The Genetic Algorithm was applied to 

overcome the non-linearity of the objective function with 

respect to the reliability. Schmitt et al. (2017) proposed a 

model that considers pre-positioned inventory as a pre-

disruption action and expediting as a post-disruption action. 

A simulation model was applied to the four-echelon supply 

chain. Swaik (2018) proposed a supply chain portfolio 

approach. In addition to scheduling, distribution and demand 

portfolio, pre-positioned inventory decisions were also 

considered in this two-stage stochastic programming model. 

Swaik (2019) compared the multi-period model with the 

two-period model and showed that the multi-period model 

allows for more detailed planning, as well as being more 

accurate in decision-making. Sawik (2020) proposed a two-

period model for the multi-echelon supply chain that 

optimizes pre-disruption and post-disruption decision-

making. He formulated a stochastic programming model, 

which determines inventory as a pre-disruption decision, and 

recovery and transshipment portfolio as a post-disruption 

decision. 

He et al. (2019) integrated the decision-making of 

pricing and inventory in supply chain disruption under the 

assumption where there is a correlation between price and 

demand. They applied a real option approach and derived an 

optimal policy. De and Mahata (2019) studied EPQ in a 
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three-stage supply chain with incomplete material quality, 

partial backordering and disruptions. They applied the 

Triangular dense fuzzy lock set approach. Yoon (2020) 

studied inventory and procurement decisions for the three-

echelon supply chain composed of a first-tier supplier, a 

second-tier supplier and a manufacturer. They studied the 

value of sharing the disruption information of second-tier 

suppliers with manufacturers. Nguyen et al. (2020) studied 

the recovery scheduling of Multi-Echelon Assembly Supply 

Chain (MEASC) networks. They considered two recovery 

metrics: (i) minimizing the maximum tardiness of any order 

of the final product of the MEASC network and (ii) 

minimizing the time to recover from a disruptive event. They 

proposed decision rules that are applied locally at each 

manufacturer and are proven to optimize the two metrics. 

 

2.3 Contributions of This Work 
The proposed model is closely related to DeCroix 

(2013), He et al. (2013), and He and Snyder (2013). These 

models consider disruption risk and derive near-optimal 

parameters under the assumption of a particular ordering 

policy. These studies assume back-ordering when inventory 

is insufficient at each stage. Therefore, the shortage of 

inventory in one stage affects the other stages and the whole 

system becomes a complicated stochastic system. The model 

proposed in this research is different from these studies as it 

assumes that expediting will completely cover the inventory 

shortage and, therefore, the inventory shortage in one stage 

will not affect the other stages. While in practice it is 

impossible to guarantee that expediting will always meet the 

requirements from a disruption, the strategic planning of 

expediting to mitigate shortages should result on a high 

certainty level if resources are prepositioned to expedite and 

the required technology in place to handle the disruption. 

This research makes three contributions. First, the 

relationship between disruptions and inventory planning 

strategies, which has mostly been discussed at a single stage, 

is extended into multiple stages. Second, it provides a 

different and richer interpretation of the multiple stage 

framework and its applicability to practice based on the 

analysis completed in the numerical experiments. Third, this 

paper analyzes the trade-off between whether to have 

protection inventory as a pre-disruption strategy or to 

expedite as a post-disruption strategy. Unlike previous work, 

the proposed model does not allow backordering as a 

mitigation strategy, a view that represents systems where it 

is not acceptable to plan for shortages. In other words, the 

plan must be to always meet the demand (service guarantee) 

based on protection inventory or by expedited 

production/inventory. 

3. MODELING FRAMEWORK 
The following section describes the modeling 

framework based on the GS model. Section 3.1 presents a 

summary of the notation. Section 3.2 presents the modeling 

framework. In Section 3.3, we present the formulation, while 

Section 3.4 presents the discretization. 

 

3.1 Notation 
The summary of the notation used is presented as follows: 

Set 

 𝑁 = {𝑖 = 1, ⋯ , 𝑛}: A set of stages 

 𝑆 = {𝑘 = 1, ⋯ , 𝑚}: A set of scenarios 

Parameter 

 𝜇: mean demand at stage 𝑛 

 𝜎: standard deviation of demand at stage 𝑛 

 𝑠𝑛
𝑜𝑢𝑡: required service time from external customer at 

stage 𝑛 

 𝑠1
𝑖𝑛 : procurement lead time from external supplier at 

stage 1 

 𝑝𝑖𝑘: processing time at stage 𝑖 in scenario 𝑘 

 𝜋𝑘: probability of scenario 𝑘 (𝑘 = 1, ⋯ , 𝑚) 

 ℎ𝑖: unit inventory holding cost at stage 𝑖 (𝑖 = 1, ⋯ , 𝑛) 

 𝑒𝑖: expedited inventory cost at stage 𝑖 (𝑖 = 1, ⋯ , 𝑛) 

 𝑧: safety factor 

 𝑟: the number of discrete supports 

Decision Variables 

 𝑠𝑖
𝑖𝑛: inbound service time at stage 𝑖 (𝑖 = 2, ⋯ , 𝑛) 

 𝑠𝑖
𝑜𝑢𝑡: outbound service time at stage 𝑖 (𝑖 = 1, ⋯ , 𝑛 −

1) 

 𝐿𝑖
𝑝𝑙𝑎𝑛

 : the planned net replenishment time at stage 𝑖 

(𝑖 = 1, ⋯ , 𝑛) 

 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙: the realized net replenishment time at stage 𝑖 in 

scenario 𝑘 (𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝑚) 

 𝑥𝑖𝑟: binary variable to take 1, if 𝐿𝑖
𝑝𝑙𝑎𝑛

 take the discrete 

support value 𝑟 and 0 otherwise. 

 

3.2 Assumptions 
Network 

A supply chain is modeled as a multi-stage serial 

network with 𝑛 stages. Let 𝑁 = {𝑖 = 1, ⋯ , 𝑛} be a set of 

stages, as illustrated in Figure 1. Each stage represents a 

point where inventory in the supply chain is held. The model 

assumes the supply of a single item, where for example stage 

1 represents the inventory of the key raw material and stage 

𝑛 is the point where inventory is shipped to the customer. 

Stage 𝑖 receives replenishment from stage 𝑖 − 1, for 𝑖 =
 2 to 𝑛. 

 

 
Figure 1. A serial supply chain 

 

Lead time 

The proposed model determines the tactical placement 

of inventory to be used in the event of a disruption. Figure 2 

describes the model’s conceptual basis. Since the time to 

recover from the disruption is unknown, we assume steady-

state conditions for an infinite period. The model assumes 

there is a set of possible scenarios called 𝑆, where the first 

scenario represents the baseline condition (no disruptions), 

and scenarios 2 𝑡𝑜 𝑚 represent disruption states; there is a 

total of 𝑚  scenarios and 𝑆 = {𝑘 = 1, ⋯ , 𝑚} . For each 

disruption scenario the production capacity of one or more 

stages of the supply chain is degraded, causing production 

delays. Let 𝑝𝑖𝑘 be the realized processing time of stage 𝑖 
in scenario 𝑘. 

 

 
Figure 2. The relationship of decision, risk event, and disruption 

1 2 𝑛

decision risk event disruption

time
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Each stage quotes the outbound service time 𝑠𝑖
𝑜𝑢𝑡 for 

the downstream stage. This becomes the inbound service 

time 𝑠𝑖+1
𝑖𝑛   for the downstream stage 𝑖 + 1 (i.e., 𝑠𝑖

𝑜𝑢𝑡 =

𝑠𝑖+1
𝑖𝑛 ). Figure 3 illustrates the relationship between 𝑠𝑖

𝑜𝑢𝑡 , 𝑠𝑖
𝑖𝑛 

and 𝑝𝑖𝑘 . Let 𝐿𝑖
𝑝𝑙𝑎𝑛

 denote the planned net lead time of stage 

𝑖 with no disruption and let 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙  denote the realized net 

lead time of stage 𝑖 in scenario 𝑘. 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 is defined as in the 

equation (1). 

 

𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 = 𝑠𝑖

𝑖𝑛 + 𝑝𝑖𝑘 − 𝑠𝑖
𝑜𝑢𝑡    (1) 

 

The realized processing time 𝑝𝑖𝑘 , the required lead 

time 𝑠𝑛
𝑜𝑢𝑡 from the external customer and the procurement 

lead time 𝑠1
𝑖𝑛  from the external supplier are given 

parameters. Inbound service time 𝑠𝑖
𝑖𝑛  for stages 𝑖 =

2, ⋯ , 𝑛 , outbound service time 𝑠𝑖
𝑜𝑢𝑡  for stages 𝑖 =

1, ⋯ , 𝑛 − 1, the net lead time before and after interruption 

𝐿𝑖
𝑝𝑙𝑎𝑛

, 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 are the decision variables. 

 

  
Figure 3. The relationship between 𝑠𝑖

𝑜𝑢𝑡, 𝑠𝑖
𝑖𝑛 and 𝑝𝑖𝑘 for each 

stage 𝑘 

 

Planned Inventory Level 

The demand for items consumed in stage 𝑛 per period 

is assumed to follow a normal distribution with mean, 𝜇, and 

standard deviation, 𝜎. In this study, a period represents a 

standard time segment to manage inventory and usually 

represents one day (or one week, or one month). 

The planned inventory level at stage 𝑖 is 𝑃𝐼𝑖 . This is 

called the planned inventory because it covers the demand 

during the net lead time 𝐿𝑖
𝑝𝑙𝑎𝑛

 assumed at the time of 

planning and is calculated according to equation (2): 

 

𝑃𝐼𝑖 = 𝜇𝐿𝑖
𝑝𝑙𝑎𝑛

+ 𝑧𝜎√𝐿𝑖
𝑝𝑙𝑎𝑛

   (2) 

 

where the first term is the average inventory of the planned 

net lead time period of stage 𝑖 and the second term is the 

safety stock of the planned net lead time period of stage 𝑖. 
The inventory levels of stage 1, ⋯ , 𝑛 − 1 shown in 

equation (2) are based on the average (𝜇)  and standard 

deviation (𝜎) of the demand at the final stage 𝑛. While the 

per period average and standard deviation of the demand at 

stage 𝑖 = 1, ⋯ , 𝑛 − 1 would depend on the ordering policy 

of the downstream stage 𝑖 + 1 , the use of the 

characterization from stage 𝑛 for all the preceding stages is 

in line with today’s information sharing capabilities and with 

the scope of the model (tactical level planning based on 

steady-state conditions). 

 

Stage cost for each scenario 

The average realized demand, 𝑅𝐷𝑖𝑘 ,  during the 

realized lead time period, 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 , is calculated as shown in 

equation (3): 

 

𝑅𝐷𝑖𝑘 = 𝜇𝐿𝑖𝑘
𝑟𝑒𝑎𝑙     (3) 

The inventory level in scenario 𝑘 can be divided into the 

following cases depending on the availability of inventory to 

meet the realized demand. 

 

Case 1: 𝑷𝑰𝒊 ≥  𝑹𝑫𝒊𝒌 

In this case, the planned inventory is sufficient to cover 

the realized demand. The expected inventory level in stage 𝑖 

is assumed to be (𝐼𝑖
𝑚𝑎𝑥 + 𝐼𝑖

𝑚𝑖𝑛)/2  as an approximate 

expected value, where 𝐼𝑖
𝑚𝑎𝑥  and 𝐼𝑖

𝑚𝑖𝑛  are the maximum 

and minimum inventory levels at stage 𝑖 . Substituting 

𝐼𝑖
𝑚𝑎𝑥 = 𝑃𝐼𝑖 , 𝐼𝑖

𝑚𝑖𝑛 = 𝑃𝐼𝑖 − 𝑅𝐷𝑖𝑘  results in an expected 

inventory level of (2𝑃𝐼𝑖 − 𝑅𝐷𝑖𝑘)/2 . By multiplying this 

approximate expected inventory level by the inventory unit 

cost ℎ𝑖 of stage 𝑖, the inventory cost 𝑐𝑖𝑘 in scenario 𝑘 of 

stage 𝑖 can be derived as shown in equation (4): 

 

𝑐𝑖𝑘 =
ℎ𝑖

2
(2𝑃𝐼𝑖 − 𝑅𝐷𝑖𝑘)   (4) 

 

Case 2: 𝑷𝑰𝒊 < 𝑹𝑫𝒊𝒌 

In this case, the planned inventory is not sufficient to 

cover the realized demand, therefore it would be fully 

consumed during the period. The expected inventory level in 

stage 𝑖  becomes 𝑃𝐼𝑖/2  by substituting 𝐼𝑖
𝑚𝑎𝑥 = 𝑃𝐼𝑖 , 

𝐼𝑖
𝑚𝑖𝑛 = 0 . In addition, it is assumed that the difference 

between the realized demand and the planned inventory will 

be covered by expedited units rather than backordering. The 

expediting assumption includes overtime production, special 

delivery and outsourcing. Assuming that 𝑒𝑖  is the 

expediting cost per unit, the cost of scenario 𝑘 in stage 𝑖 in 

Case 2 can be derived as shown in equation (5): 

 

𝑐𝑖𝑘 =
ℎ𝑖

2
𝑃𝐼𝑖 + 𝑒𝑖(𝑅𝐷𝑖𝑘 − 𝑃𝐼𝑖)   (5) 

 

Note that it is expected that the cost of expedited 

production/inventory at stage 𝑖, (𝑒𝑖) would be significantly 

larger than the holding costs at stage 𝑖 , (ℎ𝑖 ), as this cost 

represents substantial efforts to produce/deliver the units 

during a disruption.  

In the optimization model, the objective function is to 

minimize the cost for each scenario defined as in equation 

(6) by taking the smaller of equations (4) and (5), since either 

case 1 or case 2 is active. 

 

𝑐𝑖𝑘 = min (
ℎ𝑖

2
(2𝑃𝐼𝑖 − 𝑅𝐴𝑖𝑘),

ℎ𝑖

2
𝑃𝐼𝑖 + 𝑒𝑖(𝑅𝐴𝑖𝑘 − 2𝑃𝐼𝑖))(6) 

3.3 Formulation 
The model for determining the pre-positioned 

inventory of the supply chain is shown as in (7a) to (7i): 

 

minimize ∑ ∑ 𝜋𝑘𝑐𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1    (7a) 

subject to  𝑐𝑖𝑘 ≥
ℎ𝑖

2
(𝑃𝐼𝑖 − 𝑅𝐴𝑖𝑘), 

𝑖 = 1, ⋯ , 𝑛,  𝑘 = 1, ⋯ , 𝑚  (7b) 

𝑐𝑖𝑘 ≥
ℎ𝑖

2
𝑃𝐼𝑖 + 𝑒𝑖(𝑅𝐴𝑖𝑘 − 𝑃𝐼𝑖),  

𝑖 = 1, ⋯ , 𝑛,  𝑘 = 1, ⋯ , 𝑚  (7c) 

𝑃𝐼𝑖 = 𝜇𝑖𝐿𝑖
𝑝𝑙𝑎𝑛

+ 𝑧√𝐿𝑖
𝑝𝑙𝑎𝑛

𝜎𝑖 , 

 𝑖 = 1, ⋯ , 𝑛   (7d) 
𝑅𝐴𝑖𝑘 = 𝜇𝑖𝐿𝑖𝑘

𝑟𝑒𝑎𝑙 ,    
𝑖 = 1, ⋯ , 𝑛,  𝑘 = 1, ⋯ , 𝑚  (7e) 
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𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 = 𝑠𝑖

𝑖𝑛 + 𝑝𝑖𝑘 − 𝑠𝑖
𝑜𝑢𝑡 ,  

𝑖 = 1, ⋯ , 𝑛,  𝑘 = 1, ⋯ , 𝑚  (7f) 

𝑠𝑖
𝑜𝑢𝑡 = 𝑠𝑖+1

𝑖𝑛 ,    

𝑖 = 1, ⋯ , 𝑛 − 1   (7g) 

𝑠𝑖
𝑜𝑢𝑡 , 𝑠𝑖

𝑖𝑛 , 𝐿𝑖
𝑝𝑙𝑎𝑛

∈ 𝑍+,   

𝑖 = 1, ⋯ , 𝑛   (7h) 

𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 ∈ 𝑍+.    

𝑖 = 1, ⋯ , 𝑛,  𝑘 = 1, ⋯ , 𝑚  (7i) 

 

The objective function (7a) is the minimization of the 

approximated expected value of the cost under all the 

scenarios after the disruption. Constraints (7b) and (7c) 

define the cost of each scenario. If 𝑃𝐼𝑖 > 𝑅𝐴𝑖𝑘 , then 

constraint (7b) is active, otherwise constraint (7c) is active. 

Constraints (7d) define the value of 𝑃𝐼𝑖, while constraints 

(7e) define 𝑅𝐴𝑖𝑘. Constraints (7f) determine the value of the 

net lead time 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙. Constraints (7g) show that the outbound 

service time of upstream stage equals the inbound service 

time of the downstream stage. Constraints (7h) define the 

decision variables 𝑠𝑖
𝑜𝑢𝑡 , 𝑠𝑖

𝑖𝑛 , 𝐿𝑖
𝑝𝑙𝑎𝑛

 are non-negative integers, 

while constraints (7i) ensure the non-negativity of 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 . 

Note that 𝐿𝑖𝑘
𝑟𝑒𝑎𝑙  takes only non-negative integer value 

because of constraints (7f) and that in the implementation of 

the model parameters: 𝑠𝑖
𝑖𝑛 , 𝑝𝑖𝑘 ,  𝑠𝑖

𝑜𝑢𝑡 are only considered as 

integer values. 

 

3.4 Discretization 

 
Figure 4. Discretization of concave cost function 

 

As the definition of safety stock in (7d) uses a square 

root function, the model is a concave minimization problem 

and can be reformulated as an equivalent Mixed Integer 

Linear Programming (MILP) by using the discretization. 

Figure 4 illustrates the discretization of concave cost 

function. We consider a nonlinear problem to minimize the 

concave function as a building block, as shown in equation 

(8): 

minimize √𝐿𝑖
𝑝𝑙𝑎𝑛

    (8) 

subject to 𝐿𝑖
𝑝𝑙𝑎𝑛

≥ 0    

 

Let 𝑟 = 0, ⋯ , 𝑅 denote a set of the discrete supports 

in the function √𝐿𝑖
𝑝𝑙𝑎𝑛

. Let 𝑥𝑖𝑟  denote the binary variable 

to take one if 𝐿𝑖
𝑝𝑙𝑎𝑛

= 𝑟 is selected and 0, otherwise. The 

nonlinear optimization problem (8) can be approximated via 

an integer linear programming problem as in (9a ) to (9d): 

 

minimize ∑ √𝑟𝑥𝑖𝑟
𝑅
𝑟=0   (9a) 

subject to ∑ 𝑥𝑖𝑟
𝑅
𝑟=0 = 1,   (9b) 

∑ 𝑟𝑥𝑖𝑟
𝑅
𝑟=0 = 𝐿𝑖

𝑝𝑙𝑎𝑛
  (9c) 

𝑥𝑖𝑟 ∈ {0,1},𝑟 = {0, ⋯ , 𝑅} (9d) 

 

The objective function (9a) is the sum of the discrete 

supports. Constraint (9b) requires that only one discrete 

support among 𝑟 = 0, ⋯ , 𝑅  is selected. Constraint (9c) 

requires that the 𝐿𝑖
𝑝𝑙𝑎𝑛

 takes the value 𝑟, if 𝑥𝑖𝑟  is selected. 

Constraint (9d) requires a binary condition of 𝑥𝑖𝑟 . 

Using this representation, the problem can be modeled 

via MILP as in (10a) to (10l): 

 

minimize  ∑ ∑ 𝜋𝑘𝑐𝑖𝑘
𝐾
𝑘=1

𝑛
𝑖=1    (10a) 

subject to  𝑐𝑖𝑘 ≥
ℎ𝑖

2
(𝑃𝐼𝑖 − 𝑅𝐴𝑖𝑘), 

𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝐾  (10b) 

𝑐𝑖𝑘 ≥
ℎ𝑖

2
𝑃𝐼𝑖 + 𝑒𝑖(𝑅𝐴𝑖𝑘 − 𝑃𝐼𝑖), 

𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝐾  (10c) 

𝑃𝐼𝑖 = 𝜇𝑖𝐿𝑖
𝑝𝑙𝑎𝑛

+ 𝑧 ∑ √𝑟𝑥𝑖𝑟𝜎𝑖
𝑅
𝑟=0 ,  

𝑖 = 1, ⋯ , 𝑛   (10d) 
∑ 𝑥𝑖𝑟

𝑅
𝑟=0 = 1, 𝑖 = 1, ⋯ , 𝑛 (10e) 

∑ 𝑟𝑥𝑖𝑟
𝑅
𝑟=0 = 𝐿𝑖

𝑝𝑙𝑎𝑛
 𝑖 = 1, ⋯ , 𝑛  (10f) 

𝑅𝐴𝑖𝑘 = 𝜇𝑖𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 , 

𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝐾  (10g) 

𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 = 𝑠𝑖

𝑖𝑛 + 𝑝𝑖𝑘 − 𝑠𝑖
𝑜𝑢𝑡 ,   

𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝐾  (10h) 

𝑠𝑖
𝑜𝑢𝑡 = 𝑠𝑖+1

𝑖𝑛 , 𝑖 = 1, ⋯ , 𝑛 − 1 (10i) 

𝑥𝑖𝑟 ∈ {0,1}, 𝑟 = 0, ⋯ , 𝑅 (10j) 

𝑠𝑖
𝑜𝑢𝑡 , 𝑠𝑖

𝑖𝑛 , 𝐿𝑖
𝑝𝑙𝑎𝑛

∈ 𝑍+, 𝑖 = 1, ⋯ , 𝑛 (10k) 

𝐿𝑖𝑘
𝑟𝑒𝑎𝑙 ≥ 0. 𝑖 = 1, ⋯ , 𝑛;  𝑘 = 1, ⋯ , 𝐾 (10l) 

 

Thus, the problem transforms into a MILP model that 

can be solved via standard off-the-shelf MILP solvers. 

4. MODEL EXAMPLE 
This section presents an example to illustrate how the 

proposed model supports inventory decision in a multi-

echelon supply chain under disruption risk. The example 

consists of a four-echelon serial supply chain, as illustrated 

in Figure 5, where the first stage relates to a supplier that 

provides the key raw material, the second stage represents a 

factory that processes the material, the third stage represents 

an assembly operation that adds other components and 

finalizes the product and the fourth stage represents a 

distribution process that delivers to the end customers. The 

model assumes there are two possible scenarios: normal 

operation and disrupted operation, therefore 𝑚 =  2 and 

𝐾 =  {1(𝑛𝑜𝑟𝑚𝑎𝑙), 2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛)}.  In the disrupted 

scenario at least one of the stages will undergo a production 

delay. 

 

 

 
Figure 5. Four-echelon serial supply chain  
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4.1 Baseline Problem Description with No 

Disruptions 
Demand follows a normal distribution with μi =

100, 𝜎𝑖 = 10 for ∀𝑖 ∈ 𝑁, which represents a system with 

low demand variability. The inbound lead time from the 

external supplier (tier 2 supplier) is 𝑠1
𝑖𝑛  = 0, and the 

outbound lead time to external customer is 𝑠4= 0. The safety 

stock parameter (𝑧) is set to 1.96 (95% confidence level), 

thus representing a system with a relatively high level of 

customer service. The processing time at each stage is one 

time unit. 

Two baseline cases are considered. In baseline case 1, 

the inventory holding cost is $25 for stage 1 and increases by 

another $25 for each subsequent stage (thus, 𝑖4 = $100). In 

baseline case 2, the inventory holding cost for stage 1 is $70, 

and increases by $10 for each subsequent stage (thus, 𝑖4 is 

also $100). The first case serves to represent a supply chain 

where there is a significant value adding process as the item 

moves towards the customer (flows from one stage to the 

next), while the second case represents a case where there is 

less value addition as it moves towards the customer (raw 

material costs represent a larger percentage of the end item’s 

cost). The first case is called HSC: High incremental value 

Supply Chain, while the second case is called LSC: Low 

incremental value Supply Chain.  

The results for the baseline cases with no disruption is 

given in Table 1, where columns 2 to 5 indicate the optimal 

inventory levels and the last column indicates the resulting 

total costs. In the HSC baseline case, each stage gets one time 

unit worth of inventory, while in the LSC baseline case 

inventory is placed in stages 2 and 4. This illustrates the 

relationship between the incremental value of the supply 

chain (how much the value increases per stage) and the 

optimal inventory positions, even with no disruptions. 

Clearly, the total costs for the HSC baseline are lower than 

those for the LSC baseline case as the inventory cost is lower 

in the first three stages. 

 
Table 1. Baseline case results 

 Optimal Inventory Levels 
Total Costs 

τ1 τ2 τ3 τ4 

HSC 1 1 1 1 17,400 

LSC 0 2 0 2 22,989 

 

4.2 Disruption Cases 
This section analyzes the optimal inventory positioning 

decisions when there is the possibility of disruptions. Seven 

disruption cases are analyzed, each with different disruption 

scenarios (the particular stages that “fail”). The seven cases 

are illustrated in Figure 6, where the stage in red color 

indicates a disruption at that point in the supply chain. The 

first four cases represent a disruption in a single stage of the 

chain. The fifth case represents a scenario where both 

production stages have a disruption and the sixth case where 

all the internal stages (assuming distribution is internal) are 

disrupted, while the last case is where all the stages suffer a 

disruption. It is proposed that the simultaneous disruption of 

multiple stages would typically relate to natural events that 

affect a region, for example a major storm, an earthquake or 

a tsunami.  

It is noted that additional cases could be formed, but 

this set of conditions would allow demonstrating the 

applicability of the model and the sensitivity of the inventory 

decisions to the business parameters. The delay associated 

with a disruption at a stage is four time units (per stage with 

a disruption) and the probability of the disruption is 10% 

( 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10% ). The expedited inventory cost is 

based on the expediting to holding cost ratio experimental 

parameter 𝛼 , where the expedited inventory cost is the 

multiplication of 𝛼 by the inventory holding cost (𝑒𝑖 = 𝛼 ×
ℎ𝑖). The value is set to 10 (𝛼 =  10), thus for example, for 

HSC, 𝑒1 = $250 and for LSC, 𝑒1 = $700, while for both 

cases, 𝑒4 = $1,000. 

 

 
Figure 6. Set of disruption cases under analysis 

 

 
Table 2. Inventory decisions and metrics with 𝛼 =  10 𝑎𝑛𝑑 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10% 

 HSC  LSC 

Case τ1 τ2 τ3 τ4 TI %E C*  τ1 τ2 τ3 τ4 TI %E C* 

Baseline 1 1 1 1 4 0% 1.00  0 2 0 2 4 0% 1.00 

DC1 3 1 1 1 6 45% 1.39  3 1 0 2 6 61% 1.83 

DC2 1 3 1 1 6 60% 1.77  0 4 0 2 6 62% 1.91 

DC3 1 1 3 1 6 67% 2.16  0 0 5 1 6 62% 2.02 

DC4 1 1 0 4 6 69% 2.53  1 0 0 5 6 64% 2.12 

DC5 1 3 3 1 8 74% 2.93  0 4 3 1 8 73% 2.98 

DC6 1 3 3 3 10 79% 4.47  0 4 2 3 9 86% 4.17 

DC7 3 3 3 3 12 80% 4.86  3 3 3 3 12 80% 5.00 

The model’s results for the baseline and the seven 

disruption cases for the HSC and the LSC supply chain types 

are presented in Table 2. The table presents the optimal 

inventory decision per stage ( τ1 ), followed by the total 

system inventory (TI =  τ1 +  τ2 +  τ3 + τ4) . The next 

column provides the percentage of costs represented by 
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expediting (%E) under the disruption scenario, where a value 

of 0% would indicate no expediting costs are incurred during 

that disruption case as there is enough inventory to cover the 

disruption. Column C* indicates the cost ratio of each case 

versus the baseline (with no disruption in Table 1). 

The optimal decisions for both the HSC and LSC 

involve placing protection inventory at the stage where the 

possible disruption has been identified in all seven disruption 

cases. For the four cases with a single stage disruption (DC1 

to DC4), the protection inventory is one unit less than what 

would be required for “full protection” (TI would need to 

equal 7), therefore, the optimal decision includes some 

expediting when there is a disruption. For multi-stage failure 

cases (DC5 - DC7), the protection inventory is two or more 

units fewer than required for “full protection”, with the 

largest difference observed in DC7, where full protection 

would be obtained by TI = 16, but the optimal solution is TI 

= 12, under both supply chain types. Case DC6 is one where 

the total inventory is different based on the type of supply 

chain (TI = 8 for HSC, and TI = 9 for LSC), where in LSC 

there would be a higher dependency on expedited units (less 

protection inventory). The results also show that the 

placement of the inventory depends on the type of supply 

chain. The placement of inventory in the HSC is “balanced”, 

where there is inventory in each stage (with the exception of 

DC4, where stage 3 has 0 inventory). On the other hand, and 

in line with the results observed when there are no 

disruptions, inventory is placed in fewer stages for the LSC, 

where in six out of the seven cases at least one stage has no 

inventory. Only DC7 represents a case where the optimal 

placement of inventory is the same for HSC and LSC. In 

terms of the metrics, the costs associated with expediting, 

E%, and the ratio of costs versus the baseline C* increases 

as the disruption occurs in a stage of the process closer to the 

customer or as the number of disrupted stages increases. The 

difference between the supply chain types and model 

parameters is noted in the change in this value from DC1 to 

DC4. For the HSC the value of C* increased from 1.39 to 

2.53 as the disruption “moved” to a later stage, while in the 

LSC the value of C* increased from 1.83 to 2.12. The overall 

increase from baseline to the worst disruption case is close 

to fivefold. 

 

4.3 Sensitivity to the Probability of Disruption 
A critical element associated with contingency 

planning is the probability of the disruption. As model results 

are sensitive to the parameters used, it is relevant to analyze 

the relationships between inventory decisions and the 

probability of disruption. This section first describes the 

effect of a lower probability of disruption on the inventory 

decisions where the probability of the disruption is changed 

to 5% (𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 5%). The results presented in Table 

3 indicate a reduction in the probability of the disruption has 

a very significant effect on the overall inventory decisions. 

For all the seven disruption cases there is no protection 

inventory regardless of the type of supply chain; all TI values 

equal 4. In other words, the optimal decision is to count 

solely on expedited inventory when there is a disruption, 

which can be expected given the low probability of the 

disruption. The cells shaded in grey represent changes in the 

decision between 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10% 

and  𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 15%. For all seven disruption cases 

of the HSC, the optimal decision is to have one unit of 

inventory per stage, while for LSC, inventory is unevenly 

placed with the exception of the “all stages” disrupted case 

(DC7). Therefore, even when the probability of the 

disruption is low, inventory positioning decisions would 

depend on the type of supply chain. When considering the 

metrics, the %E is much higher than in the original 

environment because the optimal decision is to expedite 

when there is a disruption. The ratio of costs to the baseline 

increased as well as the disruption cases location and size, 

but at a slower rate than in the condition of 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) =

10%, about a three-fold increase from baseline to the worst 

disruption case, thus in general about 40% lower costs. 

 
Table 3. Inventory decisions and metrics with 𝛼 =  10, 𝑎𝑛𝑑 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 5% 

 HSC  LSC 

DC τ1 τ2 τ3 τ4 IP %E C*  τ1 τ2 τ3 τ4 IP %E C* 

None 1 1 1 1 4 0% 1.00  0 2 0 2 4 0% 1.00 

DC1 1 1 1 1 4 80% 1.20  1 1 0 2 4 90% 1.44 

DC2 1 1 1 1 4 89% 1.40  0 2 0 2 4 91% 1.47 

DC3 1 1 1 1 4 93% 1.60  0 0 3 1 4 92% 1.54 

DC4 1 1 1 1 4 94% 1.80  1 0 0 3 4 93% 1.59 

DC5 1 1 1 1 4 96% 2.00  0 2 1 1 4 96% 2.04 

DC6 1 1 1 1 4 98% 2.81  0 2 1 1 4 97% 2.65 

DC7 1 1 1 1 4 98% 3.01  1 1 1 1 4 98% 3.10 

 
As a second analysis, the probability of disruption is 

increased to 15% (π2(disruption) = 15%). Table 4 presents 

the results where the cells in grey indicate a change from the 

condition where π2(disruption) = 10%. As can be observed 

in Table 4, the increase in the disruption probability did not 

change the optimal decisions for 6 of the 7 disruption cases 

under the HSC environment with the exception being case 

DC2. The optimal decision under DC2 is to have “full” 

protection inventory in the stage with a possible disruption, 

therefore, for DC2 under the HSC type, there is no planned 

expediting (%E = 0%). The optimal inventory decisions 

changed for 3 cases under the LSC (DC4, DC6, DC7) where 

in DC4 the location of the inventory changed (but not the 

total), while in DC6 and DC7, the overall quantities of 

protection inventory increased. Note that the C* at DC7 is 

5.25 and 5.4 for the HSC and the LSC, respectively. This 

represents a relatively small increase versus the condition 

with 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10%  (where C* = 4.86 and 5, 

respectively).  
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Table 4. Inventory decisions and metrics with 𝛼 =  10, 𝑎𝑛𝑑 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 15% 

 HSC  LSC 

DC τ1 τ2 τ3 τ4 IP %E C*  τ1 τ2 τ3 τ4 IP %E C* 

None 1 1 1 1 4 0% 1.00  0 2 0 2 4 0% 1.00 

DC1 3 1 1 1 6 45% 1.43  3 1 0 2 6 61% 1.91 

DC2 1 4 1 1 7 0% 1.85  0 4 0 2 6 62% 1.99 

DC3 1 1 3 1 6 67% 2.28  0 0 5 1 6 62% 2.10 

DC4 1 1 0 4 6 69% 2.67  0 0 0 6 6 62% 2.21 

DC5 1 3 3 1 8 74% 3.13  0 4 3 1 8 73% 3.17 

DC6 1 3 3 3 10 79% 4.83  0 4 3 4 11 66% 4.45 

DC7 3 3 3 3 12 80% 5.25  3 4 3 4 14 61% 5.40 

 
While the full results are not presented, an analysis was 

performed with 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 20%. At this probability of 

disruption and for both types of supply chain, the protection 

inventory increased as to provide “full” coverage for all the 

disruption cases. For example, in DC7 the optimal decision 

is τ1 = 4, τ2 = 4, τ3 = 4  and τ4 = 4. In other words, the 

optimal plan when 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 20%  is never to 

expedite, and therefore for all disruption cases %E = 0%. 

While this is an expected result, it illustrates one benefit of 

the model, the ability to provide information that would 

allow decision makers to understand the relationship 

between the probability of disruption and different inventory 

configurations: no protection, partial protection, or full 

protection. 

 

4.3 Sensitivity to Expediting Costs 
Another relevant factor in the described environment is 

the cost associated with expediting. The initial analysis had 

the expediting to holding cost ratio equal to 10 (𝛼 =  10). 

This value is first decreased by 60% (𝛼 =  4), noting that 

𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛)  is returned to its initial value of 10% 

(𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10%). The results are presented in Table 

5, where the shaded cells indicate a change from the results 

in Table 2 (𝛼 =  10, 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10%). The results are 

similar to those obtained when the probability of disruption 

was reduced to 5% (presented in Table 3), a “move” towards 

full dependency on expediting inventory when there is a 

disruption. However, the location of the inventory is not the 

same between the two situations for the LSC. For example, 

in this set of conditions the optimal solution DC7 is τ1 =
1, τ2 = 1, τ3 = 0 and τ4 = 2 , while when the disruption 

probability is lower (Table 3), each stage had one unit of 

inventory. Given the plan is to expedite in the case of a 

disruption, the values of %E are higher than at the original 

condition. As in previous analysis, the value of C* increases 

as the disrupted stage moves towards the customer or where 

there are more stages with a disruption, but it is noted the 

values are lower by 30 to 40% from the condition with 𝛼 =
 10. 

 
Table 5. Inventory decisions and metrics with 𝛼 =  4, 𝑎𝑛𝑑 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10% 

 HSC  LSC 

DC τ1 τ2 τ3 τ4 IP %E C*  τ1 τ2 τ3 τ4 IP %E C* 

None 1 1 1 1 4 0% 1.00  0 2 0 2 4 0% 1.00 

DC1 1 1 1 1 4 62% 1.16  1 1 0 2 4 78% 1.35 

DC2 1 1 1 1 4 77% 1.32  0 2 0 2 4 80% 1.37 

DC3 1 1 1 1 4 83% 1.48  0 0 3 1 4 81% 1.43 

DC4 1 1 1 1 4 87% 1.64  1 0 0 3 4 83% 1.47 

DC5 1 1 1 1 4 90% 1.80  0 2 1 1 4 90% 1.83 

DC6 1 1 1 1 4 94% 2.44  0 2 0 2 4 94% 2.31 

DC7 1 1 1 1 4 95% 2.60  1 1 0 2 4 95% 2.67 

 

 
Table 6. Inventory decisions and metrics with 𝛼 =  16  𝑎𝑛𝑑 𝜋2(𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛) = 10% 

 HSC  LSC 

DC τ1 τ2 τ3 τ4 IP %E C*  τ1 τ2 τ3 τ4 IP %E C* 

None 1 1 1 1 4 0% 1.00  0 2 0 2 4 0% 1.00 

DC1 4 1 1 1 7 0% 1.44  4 1 0 2 7 0% 1.94 

DC2 1 4 1 1 7 0% 1.88  0 4 1 1 6 72% 2.05 

DC3 1 1 4 1 7 0% 2.31  0 0 5 1 6 72% 2.15 

DC4 1 1 0 4 6 78% 2.74  0 0 0 6 6 72% 2.26 

DC5 1 4 4 1 10 0% 3.19  0 4 4 1 9 63% 3.24 

DC6 1 4 4 4 13 0% 4.94  0 4 4 4 12 55% 4.57 

DC7 4 4 4 4 16 0% 5.38  4 4 4 4 16 0% 5.53 

To conclude the analysis, the value of 𝛼 is increased 

by 60% (𝛼 =  16) and the results are presented in Table 6. 

As expected, higher expediting costs would lead to an 

increase in protection inventory, where in the HSC there is 

full protection in six out of the seven disruption cases, the 

exception being DC4. The opposite occurs for the LSC, 

where there is full protection in only two disruption cases 

(DC1 and DC7). It is noted, that only one unit of inventory 

is unprotected in all cases with expediting. These confirm 

previous results that demonstrate the positioning of the 
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inventory depends on the type of supply chain. Finally, the 

C* has a similar behavior as in the previous analysis noting 

that the costs obtained here are the highest, but this is 

expected with a higher 𝛼.  

 

4.4 Sensitivity Summary Example: Case DC5 
In order to better illustrate the analysis capabilities of 

the proposed model, a graphical summary of one of the 

disruption cases is presented in this subsection. Case DC5 

with two disrupted stages was selected and a graphical 

sensitivity analysis is presented in Figure 7. The figure 

describes the combination of disruption probability and 

expediting to holding cost ratio parameters where the optimal 

decision would be a strategy that depends solely on 

expediting (the grey area), a strategy that combines 

protection inventory with expediting (blue and green areas), 

and a strategy solely based on protection inventory (yellow). 

Besides illustrating the different types of optimal strategies, 

the figure shows the differences in protection inventory 

amounts and locations based on these parameters and the 

type of supply chain.  

 

 
Figure 7. Sensitivity summary example 

 

4.5 Managerial implications 
The numerical experiments suggest the following 

managerial implications: 

 

Implication 1: The position where inventory should be held 

differs between the two supply chain types. 

For the majority of the cases the HSC and the LSC 

resulted in different inventory positioning. The inventory 

tended to be decentralized or “spread out” in the HSC type, 

while it was often centralized in the LSC type. In most 

scenarios, there is some inventory in each of the stages for 

the HSC type, while there are multiple scenarios where the 

planned inventory is 0 for one or more stages for the LSC 

type. It is argued that given the higher inventory costs of the 

LSC, there is a benefit to the risk pooling effect of “using” 

the centralized approach. On the other hand, when multiple 

disruption points are possible, it is often better to decentralize 

inventory depending on their location and the supply chain 

characteristics. This suggests that optimizing for a single 

stage is not sufficient when considering disruptions, 

demonstrating the importance and effectiveness of the global 

optimization strategy this study considers. 

 

Implication 2: The numbers and location of disruptions 

have a significant impact on costs. 

A supply chain that is susceptible to the simultaneous 

disruption of multiple stages due to physical proximity 

(location in the same “region”) or codependency on critical 

systems / suppliers requires mitigation strategies with a 

significant price tag to be able to meet its commitment to 

customers. The proposed model helps characterize the costs 

of systems with single or multiple stage disruption, and thus 

analyzing the benefits of spreading out stages geographically 

to “eliminate” the possibility of simultaneous disruptions. 

However, this would lead to an increase in transportation and 

other “movement” related costs. This suggests that managers 

need to consider the trade-off between transportation costs 

and geographic dispersion that limits or eliminates 
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simultaneous multi-stage disruptions. 

 

Implication 3: Combining inventory mitigation and 

expediting strategies reduces total costs. 

 

Inventory mitigation becomes effective when the 

probability of disruption is high or the cost of expediting is 

high. On the other hand, under most scenarios, full protection 

by inventory mitigation is rarely achieved. For this reason, it 

is not desirable to view inventory as the sole alternative and 

to consider countermeasures based on expediting such as 

capacity reserves and production flexibility. Thus, 

combining pre-disruption and post-disruption strategies as a 

mechanism to meet the system requirements reduces total 

costs and prevents the disruption to negatively impact the 

customers. 

5 CONCLUSIONS 
In today's complex global supply chains disruptions are 

unavoidable, thus effective mitigation strategies and 

contingency planning is very critical. Two typical methods 

to mitigate supply chain disruptions are holding protection 

inventory or having capabilities to expedite production / 

inventories at a premium cost. There are several critical 

questions around these strategies including how much 

protection inventory to hold and where to position it, which 

in turn dictates the level of dependency on expedited 

production / inventories. These questions have not been fully 

addressed by previous research in the case of multi-stage 

supply chains with service level commitments. This paper 

addresses this gap in literature. 

In this paper, we proposed a model that incorporates 

scenario-based delay into the multi-echelon inventory model. 

For each scenario, the delay in processing time is an input. 

Expediting is performed to continue the service when the 

inventory is insufficient. The goal is to determine the amount 

and position of inventories in a supply chain, so as to 

minimize total inventory costs to guarantee the target 

demand quantity by the target service time with the delay 

under all the considered scenarios. In numerical experiments, 

the optimal solution was derived and compared under 

different disruption stages and probabilities. Three key 

managerial implications were reached: (1) the inventory 

positioning differs between the HSC and the LSC supply 

chain types; (2) the numbers and location of disruptions have 

a significant impact on costs; and (3) combining inventory 

mitigation and expediting reduces total costs. 

Future work includes considering a model that 

incorporates network design and investment actions to 

reduce disruption probability. Another direction is to expand 

from the serial supply chain to the general network type 

supply chain where a stage might have multiple successors 

or predecessors. It is known that the network topology has a 

significant impact on supply chain risk. When a supply chain 

stage is serving many downstream stages and the demand for 

each store is an independent random variable, holding 

inventory at an upstream stage has an advantage in terms of 

decreasing the relative level of demand uncertainty. 

Therefore, analysis of optimal inventory placement in 

different networks is relevant. It is also possible to analyze 

the case where multiple disruption levels are assumed. The 

current model has two scenarios: normal operations or 

disrupted operations. A more realistic case can be analyzed 

by expanding them to the multiple cases such as normal 

operations, modest disruption and / or significant disruption, 

each of which has different processing time and probability.  
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