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ABSTRACT 
Advances in new technologies and the management of 

complex supply networks have allowed firms to make their 

supply chains more flexible, responsive, and efficient. 

Organizational learning, improved IT capabilities, and new 

manufacturing technologies are among the drivers of these 

supply chain improvements. This study investigates the 

effectiveness of organizational learning in the context of a 

Closed-Loop Supply Chain (CLSC). We apply the Monte-Carlo 

simulation methodology to a case of military CLSC involving 

line-replaceable units (LRUs). Priority is put on minimizing 

downtime in the equipment caused by LRU failures. 

Additionally, we consider costs and the environmental 

footprint. We incorporate organizational learning into the 

simulation in two ways. Namely, improved failure rates and 

shorter lead times. This study presents a set of quantitative 

assessments on the effectiveness of several organizational 

learning interventions in a military CLSC. The results indicate 

that learning leading to product improvement has the largest 

impact on overall inventory cost reduction. This study 

contributes to the current research on CLSC value creation by 

quantifying the concrete implications of specific interventions 

using realistic data in a military CLSC. In addition, this study 

contributes to the growing literature on CLSC value creation in 

general, and in CLSC informational value research more 

specifically. However, this study focuses on a specific 

intervention, representing only a few ways in which value can 

be created in a CLSC. By providing managers with quantitative 

results regarding CLSC interventions, this research can aid 

managers in making better decisions regarding CLSC 

investments. 

 
Keywords: closed loop supply chain, informational value, monte-

carlo simulation, organizational learning, product returns 

1. INTRODUCTION 
Closed-Loop Supply Chain (CLSC) management 

research has been recently garnering increasing attention 

from many scholars (Guan et al., 2020; Peng et al., 2020; 

Mohammed et al., 2017; Asim et al., 2019). The main goal 

of a CLSC is not cost reduction but rather the creation of 

more revenue opportunities (Guide and Van Wassenhove, 

2009). Indeed, more recently scholars have argued that 

CLSC value creation goes beyond direct and short-term 

revenue generation. Instead, four types of values that firms 

can generate long-term from CLSC activities have been 

identified by scholars (Krikke et al., 2013; Koppius et al., 

2014; Schenkel et al., 2015): economic value, customer 

value, environmental value, and informational value. 

Information, as a fundamental organizational resource, 

plays a crucial role in enabling firms to address challenges 

and generate value (Pellathy et al., 2019). Likewise, CLSC 

informational value can serve as a catalyst for further value 

creation (Ritola et al., 2020). However, what truly sets CLSC 

informational value apart from external sources of 

information is that it always sheds light on the specific 

processes, products, customers, and other organizational 

resources of the specific firm dealing with their returns and 

can be thus seen as a source of competitive advantage in 

dynamic environments (Ritola et al., 2022). 

More research is required on informational value and 

its impact on firm performance (Shekarian, 2020). Recent 

technological developments, often referred to as industry 

4.0, have become important in operations management and 

supply chain management (Sordan, et al 2021: Soledispa-

Cañarte, et al. 2023).  Machine learning and data analytics, 

for instance, have been widely studied and found beneficial 
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for demand forecasting in a traditional supply chain (Aamer, 

et al. 2021). Moreover, much of the existing CLSC literature 

has focused on IT factors of product return information 

(Ritola et al., 2020). While existing research has focused on 

exploring the potential benefits of learning from returns, a 

quantitative assessment of its efficacy along with emerging 

technologies is missing. At the same time, more research is 

required on the connection between spare parts inventory 

management and reverse logistics (Zhang et al., 2021). 

Moreover, the informational aspects of spare parts inventory 

management, an important part of supply chains (Al-

Momani et al., 2020) in general and crucial for military 

supply chains specifically (Zeimpekis et al., 2015; Yoho et 

al., 2013), has garnered relatively little attention (Topana et 

al., 2019).  

This study brings together the CLSC value creation 

research stream along with spare parts inventory 

management with the overall aim of understanding the value 

of organizational learning in a military CLSC. We undertake 

a quantitative case study in a single organization, using two 

exemplary cases of returns to simulate the effectiveness of 

learning on costs, service levels, and environmental 

footprint.  

This study sheds light on the expected effects and 

efficacy of specific and novel interventions opened by new 

developments in CLSC management value creation along 

with emerging supply chain 4.0 technologies. More 

specifically, the study contributes to scholarly literature by 

quantitively measuring the value of these interventions using 

a case study with real operational data. Managers dealing 

with decisions to increase their supply chain efficiency can 

use the results of this study to make better-informed 

decisions regarding which interventions might be optimal to 

undertake in their firms. 

2. LITERATURE 
CLSC management can be defined as “the design, 

control, and operation of a system to maximize value 

creation over the entire life cycle of a product with dynamic 

recovery of value from different types and volumes of returns 

over time” (Guide and Van Wassenhove, 2009, p. 10). A 

CLSC integrates traditional forward supply chains with a 

reverse supply chain (Govindan et al., 2015). A 

conceptualization of CLSC flows and functions is depicted 

in Figure 1. 

Figure 1 Closed loop supply chain flows and functions  
(Abbey and Guide, 2017) 

CLSC integrates a forward supply chain with a reverse 

supply chain (Figure 1). The underlying goal of a CLSC is 

not cost reduction but increasing revenue opportunities 

(Guide and Van Wassenhove 2009) and value creation 

(Krikke et al., 2013; Schenkel et al., 2015; Koppius et al., 

2014). Unlike the forward supply chain, the reverse supply 

chain deals with uncertain quantities of product returns of 

different qualities and thus needs to handle different returns 

in different ways (Rogers and Tibben-Lembke, 1999). A 

well-run CLSC harbors many benefits (Peng et al., 2020), 

among them is value creation which is enabled by the 

integration of forward and reverse supply chains (Schenkel 

et al., 2015).  

Informational value is a significant part of a CLSC 

(Röllecke et al., 2018; Jayaraman and Luo, 2007). 

Fundamentally, a CLSC can be considered a dynamic set of 

processes and routines designed to meet the needs of 

changing market conditions (Abbey and Guide, 2017), where 

the informational value of product returns can be used to 

generate more value (Schenkel et al., 2015). This value can 

be generated by improving processes and products, strategic 

choices, and by understanding key customers in a better way 

(Ritola et al., 2022). This study focuses on product and 

process improvement and aims to simulate quantitatively the 

effects of continuous learning in these areas.  

Learning and knowledge management effects have 

been studied in the context of Reverse Logistics and CLSC 

management (Ritola et al., 2020). Knowledge management, 

information sharing (Malekinejad et al., 2022), and 

organizational learning can be considered as a set of dynamic 

capabilities that through specific mechanisms provide fuel 

for continuous improvement of CLSC (Ritola et al., 2022). 

Among the benefits of implementing organizational learning 

is improved inventory management. Inventory management 

has a large impact on system costs and responsiveness 

(Poursoltan et al., 2021). Many studies have focused on spare 

part forecasting (Croston, 1972; Regattieri et al., 2005; 

Syntetos and Boylan, 2005; Pujawan and Arvitrida, 2010). 

Maintaining both high service level, without incurring heavy 

costs is difficult in practice (Pujawan and Arvitrida, 2010).  

Figure 2 depicts a framework for creating value from 

product returns information through dynamic capabilities 

(Ritola et al., 2022). This study provides a qualitative 

assessment of the efficacy of product and service 

improvements by focusing on a case study concerning spare 

parts inventory management with the goal of understanding 

the learning effects. More specifically, this study measures 

the impact of product improvements and improved lead 

times, stemming from analysis based on product returns, 

inventory management costs, and service level. In addition, 

integrating repair solutions can drastically reduce footprints 

(Krikke, 2011). Accordingly, the goal is to use comparative 

cases to assess the effects of learning rather than primarily to 

search for optimal decision variables. 
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Figure 2 Closed-loop supply chain dynamic capabilities 

 

Inventory management is a major part of supply chain 

costs (Al-Momani et al., 2020). Spare parts management in 

particular offers unique challenges to organizations as the 

demand pattern for spare parts is different from final 

products (Zhang et al., 2021). Furthermore, spare parts 

inventory management is closely related to CLSC 

management as spare parts can be considered one of the 

desired outcomes of reverse logistic flows (Pokharel and 

Muthab, 2009). A large challenge in spare parts inventory 

management is to achieve both cost-effective inventory 

management along with the best availability of spare parts 

(Vaez-Alaei, et al., 2018). This study focuses on not finding 

the optimal configuration of spare part inventory 

management, but rather on how learning in a CLSC affects 

costs, service levels, and footprint. 

3. METHODOLOGY 
A Monte Carlo simulation is used to depict the material 

flow of the line-replaceable units or LRUs for short. For the 

purposes of this study, we define LRU as a modular 

component that can be replaced at the location of operation 

without the need of additional equipment or arrangements. 

The material flow process starts when there is an LRU 

failure, and a replacement is required. The time between 

failures depends on the specific LRU. In an ideal case, a 

replacement unit is ready, and the main equipment is used 

for the replacement. In the case of a process failure, that is if 

there are no replacements available, a new order must be 

made. This produces a significant delay as a new 

replacement needs to be ordered, sometimes manufactured, 

delivered, and replaced. This means the unit is not working 

optimally or is not functioning entirely. The goal is to have 

adequate inventory levels to ensure minimal downtime. 

Therefore, each scenario is simulated with the objective to 

have as little downtime as possible. Consequently, the 

learning effects lead to lower ordering, repair, and holding 

costs while maintaining the same low downtime levels.  

There exists a wide variety of modelling approaches 

(Saha and Ray, 2019). The choice of Monte-Carlo simulation 

over all the other approaches was motivated by several 

factors. Firstly, it can be used to simulate inventory 

management problems (Zabawa and Mielczarek, 2007), 

service levels (Pujawan and Arvitrida, 2010), and costs 

(Zabawa and Mielczarek, 2007). Secondly, a Monte Carlo 

approach allows for suitable manipulation of the relevant 

parameters to simulate the learning effects. Thirdly, as 

compared with other simulation methods, Monte-Carlo 

simulation approach is particularly suitable for unpredictable 

demand patterns (Pujawan and Arvitrida, 2010). Since the 

demand pattern for spare parts is often lumpy (Zhang et al., 

2021), that is erratic and intermittent (Turrini and Meissner, 

2017), the Monte-Carlo approach seems particularly 

suitable. Lastly, the method is relatively commonly used as 

well as easy to use (Sonneman, et al., 2003), allowing 

managers to easily adopt this approach for calculating 

possible CLSC interventions.  

The simulation is conducted on exemplary items that 

represent typical cases of items the case organization handles 

regularly. These are (1) High-Cost case, and (2) Low-Cost 

case. In addition to the base case, concerning each exemplary 

case, a variety of interventions are simulated. These are: (1) 

Learning to improve the length of the useful life of the 

product, and (2) Learning to improve the supply chain 

process and thus reduce lead times. footprints are calculated 

as follows. Each unit of LRU is assigned a footprint value of 

10. This was done because the dataset did not include 

footprint data and because this study does not aim at 

measuring the actual footprint but only to measure the impact 

of learning. The spare parts management literature considers 

various performance measures such as lead time metrics, 

cost metrics, service and quality metrics, and assets metrics 

(Zhang et al., 2021). For the purposes of this study, we 

consider holding costs and ordering costs or in the case of 

repair, the repair costs as well. In addition, we measure 

service metrics in the form of uptime and downtime caused 

by spare parts inventory. Lastly, we consider the 

environmental footprint by a relative circularity index. Note 

that the goal of the simulation is not to find the optimal 

inventory policy, but rather to estimate and compare the 

effects of the different learning interventions. Also, we 

simulate situations with lumpier behaviour of key parameters 

and a circular repair scenario. 
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4. RESULTS 
4.1 Case Introduction 

For military organizations, the effective maintenance, 

repair, and replacement of military equipment are crucial for 

ensuring operational readiness. Among critical components 

are LRUs that need to be replaced as quickly as possible 

when broken, to maintain high service levels, a key 

performance measure for military organizations. Therefore, 

the management of LRU inventory takes on great 

importance. To capture this importance, the effects of 

learning within the simulations are measured in overall costs, 

which can be divided into order costs and inventory holding 

costs. The effects on the service level within the simulations 

are measured in days of downtime. 

The case for this study consists of a firm providing 

military equipment and the problem concerns inventory 

management. The dataset comes from a real military 

equipment supplier and all the data used for case one comes 

from that dataset. The data for case two was generated to 

provide a contrasting, Low-Cost case as the items in the data 

set were all relatively slow-moving and lacked examples of 

Low-Cost LRU. The data were obtained from a data set used 

in a previous study (Basten, 2009). Figure 3 illustrates the 

process of this study. 

 

 

Figure 3 Research process 

 
Each simulation run spans a duration of 730 days 

(equivalent to two years). Re-order point and order quantity 

was determined for each simulation based upon the same 

calculation for each simulation. The Re-order point varied 

between 3-6 for the High-Cost case and between 32-45 for 

the Low-cost Case. The order quantality was between 1-7 for 

High-Cost and between 9-17 for the Low-Cost case. The 

costs for the High-Cost item category are taken from the 

dataset along with holding costs for the Case 1. The case data 

comes from the High-Cost LRU in the data set and represents 

a high cost, slow moving case for the purposes of this study. 

It will be referred to as the High-Cost case throughout the 

study. The Case 2, named Low Cost, category was generated 

to form a comparative case with the purpose of analysing a 

counter case for the case one. The Low-Cost case differs 

from the High-Cost in that it consists of a low cost, Low-Cost 

LRU that have shorter lead times as compared to the case 1. 

Mean time between failures (MTBF), a value from the 

dataset was used to generate a random dataset using Poisson 

distribution and this was turned into a probability distribution 

and cumulative for the variable demand. We followed the 

same procedure for lead times to generate probability 

distribution and cumulative distribution for the variable lead 

time. 

 
Table 1 Case comparison 

Case Case 1. High Cost Case 2. Low Cost 

MTBF 8000 Days 7000 Days 

Number of LRU 8 Units 50 Units 

Lead Time 240 Days 140 Days 

Cost per Unit 50000 € 2000 € 

4.2 Poisson Distribution of Failures 
The results of the series of simulations using Poisson 

distribution consist of three performance measures. Total 

costs, service level, and environmental footprint. They are 

measured for each case and each learning intervention.  

The results of the total costs are depicted in Figure 4. A total 

of twenty simulations were conducted, representing different 

iterations of product improvement by simulating a reduction 

in failure rates The base case was established by the data set 

and each percentage point improvement in failure rates up to 

20%. A simulation was carried out between these values for 

each percentage point. The results indicate that the reduction 

in total costs is more drastic in the case of the High-Cost case 

as compared to Low-Cost one. 

 
Figure 4 Improved failure rates with Poisson distribution: 

total costs effects 

 

Figure 4 depicts the cost trends observed across various 

learning values for the Low-Cost LRU. The costs 

demonstrate a relatively stable pattern, with noticeable but 

minimal overall impact. Conversely, the effects in the case 
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of the High-Cost LRU are more pronounced. While the 

effects remain steadily improving at both ends of the learning 

curve, there is a larger reduction in costs at around 10% of 

failure rate reduction and onwards until the effect levels off 

again. This suggests that the relationship between failure rate 

reduction and total costs is non-linear and complex. 

Therefore, the results indicate that that the effects of learning 

interventions on costs may vary depending on the specific 

characteristics and cost structure of the LRUs. A plausible 

explanation for this observation is that beyond a certain 

threshold of sufficiently low failure rates, the incremental 

improvements in failure rates no longer yield substantial 

impacts on cost reduction. This could be attributed to the fact 

that failures become so rare that the issues caused by long 

lead times and delays in replacement become relatively 

insignificant in terms of their effect on overall costs. 

The results for reduced lead time scenarios are depicted 

in Figure 5. The results show that improving lead times have 

less of an impact on the total cost of managing the inventory 

as compared to improving failure rates. While the impact is 

noticeable, it is not recommendable to focus on this 

improvement solely for these purposes, as the impact is 

relatively small.  

Figure 5 reduced lead times with Poisson distribution: total costs 

effects 

 

These results indicate that when reduced lead times are 

compared to reduced failure rates, the cost reduction is much 

less. A similar pattern can be seen when measuring the 

service level in downtime. In the case of the Low-Cost LRU, 

the effect of reduced lead times is relatively small, reducing 

from of 1044,8 to 1007,4. 

Figure 6 Improved failure rate with Poisson distribution: 
downtime effects 

 

Figure 6 shows the results reduced failures have on 

downtime. Reduced failures lead to steady improvement in 

the Low-Cost case. This result can be explained by the 

reduced number of overall failures, which means that less 

time is needed to replace the LRUs. Contrastingly, in the case 

of the High-Cost case, the line in Figure 6 shows a steady 

improvement until a point is reached where the downtime 

drops to several days, down to the lowest time of 1,6 days. 

This indicates that once a certain level of failure is reached, 

there is a significant drop in downtime and reaches the 

average downtime of 1,6 days at the 80% rate. 

Figure 7 Improved failure rate with Poisson distribution: 
footprint effects 

 

Figure 7 displays the effects of improved failure rates 

have on environmental footprint. Importantly, only failure 

rate improvement and improved repair yields has a 

significant impact on environmental footprint. Neither 

improved lead times nor lumpy distribution has a significant 

impact on footprint. This can be explained by the fact that 

neither the lead-times nor the distribution of the failures 

leads to increase or decrease in new product purchases and 

therefore the footprint remains the same. Therefore, a firm 

looking to reduce their environmental footprint is better off 

focusing on failure rate and repair yield improvements. The 

results suggest a steady reduction in footprint as the life of 

product increases.  

 

4.3 Lumpy Distribution of Failures 
In addition to the simulations using a Poisson 

distribution, a set of simulations was conducted with a 

lumpier distribution pattern (Pujawan and Arvitrida, 2010). 

Demand that is erratic and intermittent is said to be lumpy 

(Turrini and Meissner, 2017). Lumpy distribution of failures 

was done by manually introducing a 0.01 chance of having 

four failures for one day while keeping the overall failure 

constant. The number four is chosen to account for 

unexpected situations where a sudden surge of failures 

happens. 

Figure 8 Improved failure rate with lumpy distribution: total costs 

effects 

Figure 8 shows the results of the simulations on 

product improvement on High-Cost and Low-Cost cases 

while adopting the lumpy distribution. The results are quite 
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like the results for the simulations based on a Poisson 

distribution, with the exception that the costs are in each case 

somewhat higher for both the High-Cost and the Low-Cost 

LRU. Hence uncertainty costs money. Importantly, in the 

case of the High-Cost LRU there is no significant drop at any 

point unlike when using the Poisson distribution. This 

indicates that the nature of distribution makes it overall 

harder to design an extremely low-cost inventory 

management system with high uptime. Improving lead times 

has a very similar effect to the results shown in the 

simulations with Poisson distribution as shown in Figure 4. 

Figure 9 showcases the results in the case of both reduced 

failures as well as reduced lead times. 

Figure 9 Reduced lead times with lumpy distribution: total costs 
effects 

 

Figure 9 displays the results of lead time reduction on 

total costs in a scenario with lumpy failure rates. The results 

indicate that there is no significant impact on the total costs 

of reducing lead times in a lumpy distribution of failures 

scenario as compared to the Poisson distribution one. There 

is no significant difference in the results between these two 

distribution scenarios. The effects remain modest for both 

cases. 

Figure 10 Reduced lead times and improved failure rate with lumpy 

distribution: total costs effects 

 

The results of these combined improvements are 

somewhat predictable. The findings indicate that there is no 

additional benefit from improving both, reduced failures, and 

reduced lead times, at the same time. Rather the benefit in 

terms of costs seems to add up to the sum of both 

improvements if performed independently. As in the case of 

the previous simulations using lumpy distribution, the impact 

of combined improvement of lead times product quality is 

steady and more noticeable in the case of the High-Cost case. 

Regarding the Low-Cost unit, the results are incremental and 

small but noticeable. 

Figure 11 Reduced lead times and improved failure rate with 

lumpy distribution: total costs effects 

 

Figure 11 shows the impact of product improvements 

on LRU downtime. Interestingly, again there is no similar 

point for the High-Cost unit where the downtime drops as 

drastically as in the case of using Poisson distribution. This 

can perhaps be explained by the low chance of high number 

of failures in short period of time introduced by the 

alternation to the data. Specifically, it prevents a situation 

where the lead time of new product orders are offset by the 

rare occurrence and time between failures. Rather the 

improvement is small throughout the simulations from 0% 

increased failure rate all the way up to 20%. The same can 

be said in the case of reduced lead times and in the case of 

combined improvements (Figure 9).   

 

4.4 Repair Scenario 
Lastly, we present the results of the repair scenario with 

Poisson distribution. This scenario assumes the use of repair 

processes with varying levels of repair yield going from 80% 

to 100%. While 100% yield being unrealistic, the results are 

aimed at showing the possible results and provide interesting 

insights. It is important to note that in this case, both the lead 

times as well as the costs are lower than buying a new item. 

Figure 12 shows the results of the repair scenario 

simulations on the total inventory costs. 

Figure 12 Improved repair yields: total costs effects 

 

The repair option seems to have quite a large impact on 

total costs. The overall costs are substantially lower in each 

step of the simulation as the repaired unit is cheaper as 

compared to a new one. However, the improvement between 

the different steps of the repair yield remains modest. 

Therefore, while repairing remains beneficial, the benefits of 

increasing repair yields seem to be quite modest in terms of 

total costs of inventory management. This is mirrored in the 
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case of when measuring the improvements in downtime as 

shown in Figure 13. 

Figure 13 Improved repair yields: downtime effects 

 

The downtime remains lower in each of the repair yield 

simulation for both the High-Cost as well as the Low-Cost 

case. However, as in the case when measuring total costs, the 

benefits when improving the yield are modest. Importantly, 

it is of real importance whether the repair time is shorter or 

longer than the lead time of a new product.  

Figure 14 shows the impact of repair yield on the 

footprint of each new required LRU purchased, measured as 

a value of 10 for each LRU. In this analysis, repairing a 

product does not involve environmental footprint, and 

therefore if the repair yield is 100%, there is the footprint is 

0. While reaching 100% yield is unrealistic in practice, the 

results give some indication on the effects of improvements 

in repair yield. The results suggest that of all the simulated 

interventions, repair yield improvement has the strongest 

effect on reducing footprint. 

Figure 14 Improved repair yield: footprint effects 
 

5. DISCUSSION AND CONCLUSION 
The need for more research combining reverse logistics 

and spare parts inventory management is identified by a 

recent literature review (Zhang et al., 2021). By bringing 

together recent developments in CLSC value creation 

(Schenkel et al., 2015; Ritola, et al., 2020) with military 

spare parts inventory management (Zabawa and Mielczarek, 

2007; Yoho, et al., 2013), this study contributes to the current 

literature by quantitatively assessing the impact of specific 

kind of CLSC information (Ritola et al., 2022) and by 

shedding light into the relatively understudied aspects of 

spare parts inventory management information (Topana et 

al., 2019). More specifically, the effects of two types of 

learning in a CLSC are simulated. Namely, learning to 

improve product quality resulting in decreased failure rates 

and learning to collaborate in a supply chain, leading to 

reduced lead times.  

The results of this study reveal some interesting 

conclusions regarding the impact of two learning 

interventions. The largest benefits of the interventions are 

observed in the case of High-Cost LRU, where the reduced 

failure rates lead to a significant drop in downtime from 81,3 

to 2,2 at 87% of failure rates, after which further 

improvements are minimal. This indicates that when a 

threshold of improvement is reached, managing the 

inventory becomes relatively cheap with the possibility of 

achieving high equipment uptime. The reason for this result 

may be that once the mean time between failures becomes 

long enough, new orders have enough time to arrive, even 

with long lead times. Moreover, the case analyses indicate 

that repairing seems to provide better results as compared to 

buying new LRUs. This finding can be explained by the fact 

that repair times are shorter than lead times for buying a new 

item. While this might not be the case in all supply chains, 

the benefits, when these conditions apply, are substantial. 

Environment footprint is not affected by lead times nor the 

distribution of failures and lead times. Therefore, the best 

way to reduce environmental footprint is to repair the LRUs 

and focus efforts on both increased repair yield as well as 

improved failure rates. In conclusion, improving product 

quality is the most impactful of all interventions in general, 

as it has the largest impact on both costs, and service levels 

and has reduces the environmental footprint while other 

interventions are more context specific.  

This study harbours several contributions. This is the 

first study that to our knowledge quantitatively measures 

learning effects in the context of spare parts inventory 

management. Most of the current research in spare parts 

inventory management focuses on finding and understanding 

spare parts demand patterns and developing optimal 

inventory approaches (Zhang et al., 2021). The novelty of 

this research lies in the overall aim of this study and its 

methodology. Firstly, this study provides a concrete 

quantitative assessment of value creation from CLSC 

informational value on a specific part of a CLSC, namely 

spare parts inventory management. Therefore, this study 

contributes not only to CLSC value creation research stream 

(Ritola et al., 2022) but also to spare parts inventory 

management, by bringing new developments in CLSC 

together with inventory management (Zhang et al., 2021) 

and with the informational and learning aspect of it 

specifically (Topana et al., 2019). Extant literature assesses 

various distributions to fit spare parts demand (Turrini and 

Meissner, 2017). Secondly, few studies have studied the 

relationship between distribution of key parameters and 

inventory management choices (Turrini and Meissner, 

2017). While finding an optimal inventory policy is not the 

aim of this study, it shows that using a lumpy distribution, 

often the pattern found among spare parts, causes inventory 

management to become harder and thus more complicated to 

manage. Lumpiness creates more uncertainty and has a 

negative impact on lead times, costs and footprints and 

reduces the positive effects of learning. Considering actual 

spare parts demand tends to be lumpy (Zhang et al., 2021), 

the results of this study provide essential guidance by 

showing a comparison between lumpy distribution and 
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Poisson distribution. For practitioners, this study may be 

interesting in two ways. First, it provides quantitative data 

for decision-making regarding CLSC priorities. The results 

help decision makers in choosing the correct interventions in 

the appropriate circumstances in terms of spare parts demand 

distribution. Second, the simulation model used in this study 

can be used by managers to assess similar and other related 

interventions.  

Every study has its limitations. The results of this study 

measure only several benefits of learning from product 

returns in a CLSC. Firstly, this study measures the benefits 

in terms of costs, service level, and environmental footprint. 

However, both interventions can have other benefits as well. 

In addition, footprint metrics can be more advanced if data is 

available. In addition, only two types of interventions are 

considered whereas the learning opportunities of a CLSC 

extend beyond them (Ritola et al., 2020; Ritola et al., 2022). 

For instance, this study does not consider the impact of 

learning product returns on strategic decision-making. 

Therefore, more research is required in assessing the impact 

of other types of interventions and performance measures. 

Moreover, this research can be extended by assessing the 

impact of tactical and strategic level learning in a CLSC. For 

instance, quantitative research in the form of surveys could 

shed light on the impact of operational CLSC learning and 

qualitative case studies could prove to be fruitful in 

highlighting the mechanisms and impact of strategic-level 

learning. Lastly, emerging areas of interest, such as industry 

4.0 technologies (Garrido-Hidalgo et al., 2019; Dev et al., 

2020; Zheng et al., 2021) could prove to be an interesting 

avenue for further research. For instance, in terms of certain 

LRUs, the use of additive manufacturing could help to 

drastically reduce the long lead times. Another approach 

might be to study the use of smart contracts to improve 

monitoring while minimizing human intervention (Mohril et 

al., 2021). 
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