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ABSTRACT 
In recent years, there has been a growing surge of interest 

in the application of data analytics (DA) within the realm of 

supply chain management (SCM), attracting attention from 

both practitioners and researchers. This paper presents a 

comprehensive examination of recent implementations of DA in 

SCM. Employing a systematic literature review (SLR), we 

conducted a meticulous analysis of over 354 papers. Building 

upon a prior SLR conducted in 2018, we identify contemporary 

areas where DA has been applied across various functions 

within the supply chain and scrutinize the DA models and 

techniques that have been employed. A comparison between 

past findings and the current literature reveals a notable 

upsurge in the utilization of DA across most SCM functions, 

with a particular emphasis on the prevalence of predictive 

analytics models in contemporary SCM applications. The 

findings of this paper offer a detailed insight into the specific 

DA models and techniques currently in use across various SCM 

functions. Additionally, a discernible increase in the adoption 

of mixed or hybrid DA models is observed. However, several 

research gaps persist, including the need for more attention to 

real-time DA in SCM, the integration of publicly available data, 

and the application of DA to mitigate uncertainty in SCM. To 

address these areas and guide future research endeavors, the 

paper concludes by delineating six concrete research directions. 

These directions offer valuable avenues for further exploration 

in the field. 

 
Keywords: data analytics, descriptive analytics, predictive 

analytics, prescriptive analytics, supply chain management, 
systematic literature review  

1. INTRODUCTION 
Supply Chain Management (SCM) represents the 

backbone of our economy. Regardless of sectors or 

industries, supply chains (SC) are the preferred form of value 

creation in manufacturing and distributing products and 

services and ultimately in delivering value to customers. In 

recent years, SC have become increasingly complex, multi-

echelon networks of companies. Once stable relationships 

and reliable partnerships have become unpredictable and 

customer demands are increasingly volatile. Against the 

background of global pandemics, natural disasters and 

conflicts becomes obvious that modern SC are very different 

from SC of even just a few years ago (Brandtner, 2023; Riahi 

et al., 2021). 

Especially over the last two decades, SC complexity 

and uncertainty has increased significantly. First, due the 

adoption of lean management and the just-in-time 

philosophy, that left SC vulnerable to adverse events with 

only little room for error or change. Second, the increased 

global and less vertical integration in SC exposed SCM to 

much higher risks than before. And third, numerous 

disruptive events disturbed global SC (Baryannis et al., 

2019; Khuan et al. 2023). 

Faced with a multitude of challenges and high degrees 

of uncertainty, SCM is forced to adopt new approaches to 

handle and manage complex SC networks. At the same time, 

increasing amounts of data are generated and exchanged 

along the SC and across the activities and tasks of SCM. 

However, unlike capital, data per se has no value without 

appropriate ways of analysis (Dubey et al., 2020) and the 
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field of Data Analytics (DA) is increasingly becoming 

popular in SCM research (Aamer et al. 2020). Various 

publications have analysed the maturity and scope of DA 

applications and their SCM specifics. Especially in the 

previous years, new approaches to data analytics have been 

proposed by research, encompassing a wide variety of tasks 

and issues (I. Lee & Mangalaraj, 2022; Nguyen et al., 2018; 

Stefanovic, 2021). 

The amount of empirical evidence demonstrating the 

successful application of DA in SCM on a theoretical level 

is high and encompasses a variety of application settings and 

technical specifications (I. Lee & Mangalaraj, 2022; Aamer 

et al. 2020). Benefits include reduced costs, increased 

availability, higher sustainability, better SC agility and 

increased customer satisfaction (Nguyen et al., 2018). DA 

can be considered a game-changer in SCM and the need for 

identifying proven use-cases along SCM tasks and technical 

details of models used is growing (Fawcett & Waller, 2014). 

However, in SCM practice, the adoption DA is still in its 

infancy and literature reviews dealing with actual 

applications are often limited to certain SCM tasks and 

operational functions (Gonçalves et al., 2021; Mageto, 2021; 

Tirkolaee et al., 2021).  

One of the few papers providing a comprehensive 

overview of actual practical applications of DA in SCM was 

published by Nguyen et al. (2018). They provide a well-

structured and comprehensive overview of various 

application potentials of big data analytics (BDA) in SCM 

on the level of i) specific SCM areas, ii) DA levels, iii) DA 

model type and iv) specific DA techniques. They applied a 

systematic literature review (SLR) and analysed over 88 

papers published between 2011 and 2017 in detail. Their 

results showed yearly increased numbers of publications and 

strong upward trends at all levels of analytics (Nguyen et al., 

2018). Maheswari et al. (2020) conducted a SLR to analyze 

current applications of DA in SCM, focusing on 2015 to 

2019 (Maheshwari et al., 2021). Their results also indicate 

an increasing number of publications and a growing 

relevance of DA across various SCM tasks. However, they 

did not provide details on the level of DA models and 

specific DA techniques. Similarly, Aryal et al. (2020) 

conducted a SLR to analyse the impact of disruptive 

technologies like DA and the Internet of Things (IoT) on 

SCM. Their analyses encompassed literature from 2008 to 

2017. They did not provide details on the level of specific 

DA models and techniques (Aryal et al., 2018). Chebh-

Gamoura et al. (2020) published a SLR focusing on the 

application of DA based on the elements of the supply chain 

operations reference model (SCOR). Their results cover 

literature between 2001 and 2017 (Chehbi-Gamoura et al., 

2020).  

More recent articles either focus on benefits of DA in 

SCM and challenges occurred in the course of its actual 

application only (Lee and Mangalaraj 2022), did not take into 

consideration published papers from 2021 (Pawar & Paluri, 

2022), or did not focus on actual applications but theoretical 

potential only. For example, the SLR study provided by Lee 

and Mangalaraj (2022) showed similar results to Nguyen et 

al. (2018) for the time span of 2013-2021, however, they 

focused on prior literature reviews only. Literature reviews 

regarding the current status (i.e., in the years of 2020 and 

2021) of actual applications of DA and their model- and 

technique-related aspects in different tasks of SCM are 

missing. In contrast to the papers stated above, our paper 

addresses this research gap and - building on the previous 

work by Nguyen et al. (2018) - focuses on actual DA 

application studies in SCM between 2020 and 2021. To close 

the gap between their study and the current state of research, 

we follow the proven methodology presented in Nguyen et 

al. (2018) and analyze 354 papers in detail. Following their 

methodology, we define the following research questions for 

our paper, allowing for a detailed comparison of their results 

from the analysis timeframe of 2011 to 2017 and current 

research on DA application in SCM from 2020 to 2021: 

(1) In what areas of SCM is DA being applied?  

(2) At what level of analytics is DA used in these SCM 

areas?  

(3) What types of DA models are used in SCM?  

(4) What are DA techniques employed to develop 

these models? 

The remainder of the paper is structured as follows. 

Section 2 provides the details of the review methodology 

(i.e., our SLR procedure) for literature search delimitation, 

and analysis. Section 3 presents the results of the SLR. 

Section 4 discusses the findings of our study against the 

background of Nguyen et al. (2018) and additional literature 

sources. Section 5 provides an overview of possible future 

research directions and section 6 concludes the paper and 

states research limitations. 

2. REVIEW METHODOLOGY 
Following the methodological approach applied in 

Nguyen et al. (2018), the structure of our review 

methodology is based on (Nguyen et al., 2018) and on the 

acknowledged content analysis approach by Mayring 

(Mayring, 2022). The basic steps of this approach comprise 

four sequential activities, which were used to systematically 

conduct our literature review: 

(1) Step 1 – Material collection: Systematic and 

reproducible process of article search and 

delimitation. 

(2) Step 2 – Descriptive analysis: Provision of general 

characteristics of articles. 

(3) Step 3 – Category selection: Construction of a 

framework of analytical dimensions and 

categories to classify articles. 

(4) Step 4 – Material evaluation: Analysis of articles 

based on the dimensions and categories of the 

classification framework and interpretation of 

results. 

Subsequently, the first three steps and their results are 

described in sections 2.1., 2.2, and 2.3, followed by a detailed 

provision and interpretation of the main results of step 4 in 

section 3. 

 

2.1 Material Collection 
The first step of material collection consists of defining 

an effective set of search keywords. Nguyen et al. (2018) 

defined two groups of keywords related to “BDA” and 

“SCM”. They argued that their keywords classification (cf. 

Table 1) allows for capturing literature at the intersection of 

BDA, DA and SCM (Nguyen et al., 2018). To encompass 

recent advancements and guarantee the inclusion of pertinent 

works that could be overlooked when employing more 
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general terms such as “machine learning,” we've introduced 

three additional keywords to the DA group: “deep learning”, 

“neural networks”, and “reinforcement learning.” Following 

their proposed material selection approach combined with 

three new keywords, we started with searching for possible 

pairs (90 pairs) between these groups in selected popular 

databases such as Scopus, Science Direct, EBSCO, and 

Emerald. As the aim of the current paper is to explore latest 

developments in the context of BDA, DA and SCM, we 

focused on articles published between 2020 and 2021. Since 

we are following the exact review approach of Nguyen et al. 

(2018), we are in a second step able to compare trends based 

on our results with theirs for the time span of 2011 to 2017. 

Table 1 presents the keywords used. 

The initial search resulted in 37.387 articles, 

eliminating duplicated papers reduced the list to 24.055 

papers. We subsequently checked for papers without “BDA” 

and “SCM”-related keywords as defined in Table 1 in title 

or abstract. The next step comprised filtering based on 

language and publication type. Our analysis was focused on 

English articles that have been published in academic 

journals. Therefore, by excluding non-English conference 

papers, news, or thesis results, 5.701 papers were further 

selected for the next filtering step. We intended to have a list 

of articles that actually implemented “BDA” to solve “SCM” 

problems. Nguyen et al. (2018) excluded irrelevant papers 

by carefully reading the introduction and discussion part. 

Due to large number of resulted papers, we needed to split 

this step into two phases of a first, quick skimming of title 

and abstract and a second, careful analysis of introduction 

and discussion section. This exclusion reduced our list to 354 

papers, which have been further selected for a full paper 

review. Figure 1 illustrates this material collection and 

article delimitation process. 

 

 
Table 1 Keywords defined in the two keyword groups 

Group 1 - DA Group 2 - SCM 

Big data Supply chain 
Data analytics Purchasing 
Data mining Procurement 

Machine learning Manufacturing 
Descriptive analytics Inventory 
Predictive analytics Storage assignment 

Prescriptive analytics Order picking 
Deep learning Logistics/ transportation 
Neural network Transport 

Reinforcement learning  

 

 

 

 

Figure 1 Material collection process 

 

 

Figure 1:  Flow-based figure of the material collection 

process steps done to filter relevant research papers from 

initially 37.387 results to ultimately 354 selected papers. 

 

2.2 Descriptive Analysis 
Figure 2 provides a comparison of the number of 

publications in 2020 and 2021, contrasted to the results of the 

reference paper published by Nguyen et al. (2018) for 2011 

to 2017. The graph indicates that the number of articles 

published in this context has increased radically in recent 

years, i.e., to 154 in 2020 and 200 in 2021. 

Figure 2: Bar-chart figure showing the development of 

relevant articles based on the defined keywords from 2011 to 

2021, including 154 in 2020 and 200 in 2021. 

 

 
Figure 2 Comparison of the number of relevant articles published 

between 2011 and 2021 
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The 354 papers that are selected have been published in 

204 different journals. In the reference study of Nguyen et 

al. (2018), this list was limited to 46 journals. The number of 

journals publishing application-oriented papers at the 

intersection of DA and SCM has hence more than tripled in 

our recent study. Out of the 204 journals examined, 49 of 

them were found to have multiple repetitions, amounting to 

a total of 200 papers (as shown in Figure 3). We proceeded 

to investigate these journals based on their respective subject 

areas using Scimagojr websites, and then compared the 

results with the journals that were most frequently repeated 

in a previous study conducted by Nguyen et al. (2018). A 

detailed comparison of the top 10 subject areas among the 

most repeated journals in both studies is presented in Figure 

4. From the figure, it becomes evident that new areas, such 

as material science, mathematics, chemical engineering, and 

physics and astronomy, have surfaced. This clearly indicates 

a broader spectrum of interest and a wider audience for the 

research field under examination. 

 

 
Figure 3 Distribution of papers amongst most frequent journals 

 

 

 
Figure 4 Share of most frequent papers among top 10 subject area 

 

 

 

 

 

 

 

 

 



Darbanian, et al.: Data Analytics in Supply Chain Management: A State-of-the-Art Literature Review 

Operations and Supply Chain Management 17(1) pp. 1 - 31 © 2024 5 

  

Figure 3: Bar charts of the distribution of relevant 

articles among journals, most articles were published in 

IEEE access, IJPR and JMS. Figure 4 : Visual representation 

of the share of most frequent papers amongst top 10 subject 

areas, the top 3 being (1) computer science, (2) engineering 

and (3) business, management, and accounting. 

For analyzing connections between SCM functions and 

DA levels and models, the classification scheme proposed by 

Nguyen et al. (2018) and depicted in Figure 5 was applied 

in the current study. In total, we defined four main analysis 

dimensions, i.e., i) SCM function, ii) DA level, iii) DA 

models and the respective DA techniques, and iv) industry of 

application. All 354 selected papers were critically read in 

full and mapped to 17 analytic categories across these 

dimensions.  

The first dimensional layer is related to the DA level of 

each article. This categorization is defined based on what the 

respective study focused on. Data analytics comprises three 

categories: descriptive analytics, predictive analytics, and 

prescriptive analytics. In a SCM context, descriptive 

analytics refers to the type of data analytics that typically 

applies statistics to summarize what has happened or is 

currently happening in the SC of a company. It produces 

valuable hindsight about events in the SC, identifies factors 

and correlations, detects exceptional events, and enables the 

analysis of the impact of identified events on other elements 

of the SC. Usually, descriptive analytics represents the basis 

for SCM reports, which are used to carry findings from DA 

to management (Tyagi, 2021). Predictive analytics (PA) 

refers to the type of DA that makes predictions about yet 

unknown, hence uncertain, events. PA typically applies 

advanced analytics models. By examining past data trends 

and patterns in the data, PA seeks to discover the causes of 

events as well as to predict possible future events 

respectively to fill in data or information that does not yet 

exist but can be generated based on existing data (Brandtner, 

2023). Prescriptive analytics extends beyond all previous 

three types of DA and recommends actions for decision 

making (Tyagi, 2021). The focal question of prescriptive 

analytics is “what should I do” and its results typically 

include recommendations through multi-criteria decision-

making (MCDM) techniques, simulation, and optimization 

(Riahi et al., 2021). Hence, if the application study only 

describes past, predicts future or prescribes action 

measurements for decision making processes, it is 

accordingly mapped to descriptive, predictive, or 

prescriptive analytics, respectively. Besides these three 

categories, some sources also introduce diagnostic analytics, 

which involves a more thorough examination of the analyzed 

data to uncover and comprehend the underlying reasons for 

events and their influence on supply chain behavior 

(Maheshwari et al., 2021). Nevertheless, it's worth noting 

that diagnostic analysis can, to some extent, be encompassed 

within the descriptive and predictive analytics (PA) 

classification (Riahi et al., 2021). 

The second dimensional layer represents the main 

functions of SCM addressed in each paper. In case the SCM 

function of a paper is not applicable to any of the proposed 

dimensions, it will be regarded to as “General SCM”-related 

work. The selected literature is subsequently categorized into 

levels of key activities for each SCM function. The activities 

are defined as follows, each comprising a set of sub-tasks: 

 Procurement: Supplier selection, sourcing cost 

improvement, sourcing risk management 

 Manufacturing: Product research and development 

(R&D), production planning and control, quality 

management, maintenance, and diagnosis 

 Warehousing: Storage assignment, order picking, 

inventory control 

 Logistics/ Transportation: Intelligent 

transportation system, logistics planning and in-

transit inventory management 

 Demand management: Demand forecasting, 

demand sensing, demand shaping 

The third analytical dimension represents the specific 

models that are used in DA. Each model may include one or 

several DA techniques. Popular examples include e.g., K-

means clustering, association rule mining, linear or logistic 

regression, neural networks, decision trees, support vector 

machines (SVM), statistics, heuristic and metaheuristic 

approaches, naïve bayes, time series forecasting, text mining, 

anomaly detection, sentiment analysis, fuzzy logic, feature 

selection and, etc. 

 

 
Figure 5 Classification of analysis dimensions and categories 
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Figure 5 Alt Text: Figure with the four levels of 

analysis dimensions of the literature review, including the 

level of analytics, the SCM functions, the models used and 

the industry it was applied in. 

In addition to the classification scheme developed in 

(Nguyen et al., 2018), we analysed the relevant industry in 

which the application study took place. To this end, we used 

the categories defined in the standard industrial classification 

(SICCODE, 2023): 

 Agriculture, Forestry and Fishing 

 Construction 

 Finance, Insurance and Real Estate 

 Manufacturing 

 Mining 

 Public administration 

 Retail trade 

 Services 

 Transportation, Communications, Electric, Gas 

and Sanitary service 

 Wholesale trade 

 Non-classifiable 

3. MATERIAL EVALUATION 
In this section, the detailed results of the systematic 

literature review conducted in accordance with the approach 

presented in section 2 are provided. 

3.1 Review Results by SC Functions 
The selected literature can be classified based on SC 

function and key activities as follows (cf. Table 2). 

 
 
 

 

Table 2 Classification of literature based on SC functions and key activities 

SC functions 
Key 

activities 
Papers 

Demand 
management 

Demand 
forecasting 

Kharfan et al. (2021), Wang et al. (2020b), Anglou et al. (2021), Xiao et al. (2021), Amalnick et al. 
(2019), Spiliotis et al. (2020), Abolghasemi et al. (2020), Lalou et al. (2020), Nikolopoulos et al. 
(2021), Gustriansyah et al. (2020), Feizabadi (2020), He and Yin (2021), Inedi et al. (2020), Bajaj et 
al. (2020), Weng et al. (2019), Matthew & Abdullah (2021), Garrido-Labrador et al. (2020), van Belle 
et al. (2021), Meng (2021), Li and Kockelman (2022), Croce et al. (2021 Massaro et al. (2021), Yu 
et al. (2021e), Cho (2020), Dou et al. (2021), Zhang and Mu (2021), Chen et al. (2020b), Aktepe et 
al. (2021), Jiang et al. (2021a), Xu et al. (2021a), Li et al. (2021c), Chandriah and Naraganahalli 
(2021), Liu et al. (2021), Ye et al. (2020). 
 

Demand 
sensing 

Sathyan et al. (2021), Pereira and Frazzon (2021), Martínez et al. (2020), Grzybowska et al. (2020), 
Bhutada et al. (2020), van Steenbergen and Mes (2020), Jain and Kumar (2020), Li et al. (2021a), 
Bilgic et al. (2021), Taghikhah et al. (2021), Türk et al. (2021), Shokouhyar et al. (2021), Barnes et 
al. (2021), Wu et al. (2021), García-Barrios et al. (2021), Anglou et al. (2021), Wei et al. (2020), 
Migdał-Najman et al. (2020) 
 

Demand 
shaping 

Safara (2020), Verma et al. (2020), Lam et al. (2021), Lisnawati and Sinaga (2020), Xu et al. (2021b), 
Song and Xue (2021), Kalinin et al. (2020), Iftikhar and Khan (2020), Shahbazi et al. (2020), Yang 
et al. (2021c), Li et al. (2021b) 
 

 Other 
Konishi et al. (2021), Jo and Lee (2021), Brandtner et al. (2021), Vijayaragavan et al. (2020), Alqwadri 
et al. (2021) 
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Table 2 Classification of literature based on SC functions and key activities (Con’t) 

SC functions Key activities Papers 

General SCM 

Kara et al. (2020, Melançon et al. (2021), Gholizadeh et al. (2020), Bifulco et al. (2021), Yu et al. 
(2021b), Jiang et al. (2021b), Song et al. (2021), Ma et al. (2021a), Li and Mao (2020), Deng et al. 
(2020), Bertsimas and Kallus (2020), Goodarzian et al. (2021), Chakraborty and Das (2021), Ali et 
al. (2021a), Moghimi and Beheshtinia (2021), Dai and Liu (2020), Li et al. (2020c), Abdella et al. 
(2020), Wong et al. (2021), Kuo et al. (2021), Narwane et al. (2021), Zhou and Guo (2021), Salamai 
et al. (2021), Park (2021), Wu et al. (2022), Asghari et al. (2021), Fang and Su (2021), Gumte et al. 
(2021), Yeboah-Ofori et al. (2021), Wan (2021), Ping Zhang et al. (2021), Chen and Huang (2021), 
Guillermo Muñoz et al. (2020), Lunardi and Lima Junior (2021), Xiang (2020), Khan et al. (2020), 
Sang (2021), Jianying et al. ( 2021), Abdelsamad et al. (2021), Nezamoddini et al. (2020), Abdelaziz 
et al. (2020), Yang et al. (2021d), Akbarian-Saravi et al. (2020), Chen et al. (2021a) 

Logistics 

Intelligent 
transportation 

system 

Dimokas et al. (2020), Ibrahim et al. (2020), Chen et al. (2021b), Hwang (2021), Lorenc et al. (2021), 
Wiegmans et al. (2020), Mouammine et al.(2020), Zanin et al. (2020), Cerquitelli et al. (2020), 
TASHEV et al. (2020), Zhang et al. (2020b), Kinra et al. (2020), George and Santra (2020), Gupta 
et al. (2020), Chen (2020), Ding (2020), Kosowska-Stamirowska (2020), Harrison et al. (2020), Chen 
et al. (2021c), Han et al. (2021a), Sarabia-Jácome et al. (2019), Lock et al. (2021), Tsolakis et al. 
(2021), Jurdana et al. (2020), Oucheikh et al. (2021), Lee and Jeong (2021), Adi et al. (2020), Ren 
et al. (2020), Nadi et al. (2021) 

In-transit 
inventory 

management 

Li et al. (2020b), Sun et al. (2020b), Yi and Ma (2020), Li and He (2021), Kim et al. (2020a), Molaris 
et al. (2021) 

Logistics 
planning 

Moscoso-López et al. (2021), Balster et al. (2020), Liang and Wang (2021), Mangina et al. (2020), 
Cheng and Pan (2021), Choi (2020), Yue et al. (2021), Monteil et al. (2021), Vorkapić et al. (2021), 
Hathikal et al. (2020), Wang and Yin (2020), Govindan and Gholizadeh (2021), Ahmadi et al. (2020), 
Gocer and Sener (2022), Han et al. (2021a), Ruan et al. (2021), Yuan et al. (2021), Kemmar et al. 
(2021), Min and Kang (2021), Yu et al. (2021a), Puskás et al. (2020), Chargui et al. (2021), Maity et 
al. (2020), Issaoui et al. (2021), Abosuliman and Almagrabi (2021), Liu (2021a), Yuan et al. (2021), 
Phiboonbanakit et al. (2021), Zhang et al. (2020a), Teng (2021), Adi et al. (2021), Nagendra et al. 
(2020) 

Manufacturing 

Maintenance & 
diagnosis 

Arjomandi et al. (2021), Oleghe (2020), Kang et al. (2020a), Yu et al. (2021d), Li et al. (2021d), 
Frumosu et al. (2020), Feng et al. (2018), Kaparthi and Bumblauskas (2020), Jun (2021), Sánchez 
et al. (2020), Malawade et al. (2021), Li et al. (2020a), Kapp et al. (2020), Vasavi et al. (2021), 
Eirinakis et al. (2021), Cao et al. (2020), Stietencron et al. (2021), He et al. (2021a), Ayvaz and Alpay 
(2021), Dierkes et al. (2021), Acernese et al. (2020), Chang et al. (2021), Kim et al. (2021), Han et 
al. (2021b), Sang et al. (2021), Al-Shayea et al. (2022), Liu et al. (2020b), Lv et al. (2021), Tanuska 
et al. (2021), Benatia et al. (2020) 

Product R&D 
Huma et al. (2021), Corney et al. (2020), Ghahramani et al. (2020), Zhang et al. (2021), Pahwa and 
Starly (2020), Oh et al. (2021), Wang et al. (2021d), Ning et al. (2020), Bhatnagar et al. (2020), Wang 
et al. (2020c) 

Production 
planning & 

control 

Subramaniyan et al. (2020), González Rodríguez et al. (2020), Shin (2020), Oberdorf et al. (2021), 
Tamás and Koltai (2020), Zhao and Zhang (2021), Fang et al. (2020), Tang and Ge (2021), Ma et 
al. (2020), Yamashiro and Nonaka (2021), Qiao et al. (2020), Tayal et al. (2020), Tayal et al. (2020), 
Mahmoudi et al. (2021), Li et al. (2020d), Morariu et al. (2020), Morin et al. (2020), Goettsch et al. 
(2020), Lucht et al. (2021), He et al. (2021b), Lee et al. (2020a), Tong et al. (2021), Tassel et al. 
(2021), Yang et al. (2021a), Ribeiro et al. (2020), Sun et al. (2020a), Mishra et al. (2021), 
Jomthanachai et al. (2020), Lin et al. (2020), Fang et al. (2021), Bouzary et al. (2021), Wang et al. 
(2021a), Lan and Chen (2021), Rehman et al. (2021), Kazi et al. (2021), Kuhnle et al. (2021), Lee 
and Gao (2021), Chen et al. (2020a), Wang (2021), Han and Yang (2020), Wang et al. (2021c), Liang 
(2020), Pooya et al. (2021), Lai et al. (2020), Ghoushchi and Abbasi (2021), Yu et al. (2021c), Hu et 
al. (2020), Kim et al. (2020b), Golmohammadi et al. (2021), Seidgar et al. (2020), Sadiq et al. (2020), 
Alnahhal et al. (2021), Berges et al. (2021), Feldkamp et al. (2020), Guo et al. (2020), Wang et al. 
(2021g) 
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Table 2 Classification of literature based on SC functions and key activities (Con’t) 

SC functions 
Key 

activities 
Papers 

 
Quality 

management 

Khayyati and Tan (2021), Liu and Duan (2020), Wang et al. (2021e), Abdelrahman and 
Keikhosrokiani (2020), Wenzlick et al. (2021), Sun et al. (2021b), Sanchez-Marquez et al. (2020), Ali 
et al. (2021b), Papananias et al. (2020), Fathy et al. (2020), San-Payo et al. (2020), Niccolai et al. 
(2021), Teniwut et al. (2020), Kappelman and Sinha (2021), Rousopoulou et al. (2020), Schmitt et 
al. (2020), Ismail et al. (2021), Jun et al. (2020), Oh et al. (2021), Sun and Braatz (2021), Xin-chun 
et al. (2021), Sariyer et al. (2021), Zaman and Hassan (2021), Detzner and Eigner (2021), Wang et 
al. (2021h), Stauder and Kühl (2022), Liu (2021b), Wen et al. (2020), Chaikine and Gates (2021), 
Ma et al. (2021b), Kafunah et al. (2021), Lee et al. (2020b), Kang et al. (2020b), Pu et al. (2020), 
Nagata et al. (2021), Noor et al. (2020), Konovalenko and Ludwig (2021) 

Procurement 

Sourcing risk 
management 

Fayyaz et al. (2020), Wang et al. (2020a), Brintrup et al. (2020), Niu et al. (2021), Chitikela et al. 
(2021), Rabe et al. (2021) 

Supplier 
selection 

Alavi et al. (2021), Liu et al. (2020a), Liou et al. (2021), Wilson et al. (2020), Islam et al. (2021), 
Gegovska et al. (2020) 

Warehousing 

Inventory 
control 

Hajek and Abedin (2020), Arumsari and Aamer (2021), Punia et al. (2020), Wang et al. (2021b), 
Luchko et al. (2019), Galli et al. (2020), Agarwal, Mohit, Anurag Wadhwa, Kartik Batra, and Senthil 
Kumar. (2020), Galli et al. (2021), Andaur et al. (2021), Kalaiarasi et al. (2021), Ntakolia et al. (2021), 
Cui et al. (2021b), Dittrich and Fohlmeister (2021), Abu Zwaida et al. (2021), Yang et al. (2021b), 
Wang et al. (2021f), Sharifnia et al. (2021), Deng and Liu (2021) 

Order picking 
Li et al. (2021e), Granillo-Macías (2020), Zhou et al. (2020), Villarreal-Zapata et al. (2020), Dunke 
and Nickel (2020), Ardjmand et al. (2020) 

Storage 
assignment 

Saleet (2020), Aylak et al. (2021), Sun et al. (2021a), Cui et al. (2021a) 

 

Figure 6 illustrates the share of each SC functions 

amongst the reviewed articles. As it is shown in the part A of 

Figure 6 in most publications (38%), researchers addressed 

manufacturing related issues in SCM. Demand management 

(19%), logistics respectively transportation (19%) and 

general SCM (12%) also were amongst the most popular 

topics of applied research at the intersection of DA and SCM. 

When comparing these results with those of the previous 

study (Nguyen et al., 2018) (cf. part B of Figure 6), we can 

see, that the proportion of applications of DA in 

procurement, warehousing and logistics respectively 

transport has reduced, whereas for general SCM, demand 

management and manufacturing it has increased in recent 

literature. 

 

 

  
A: Recent distribution B: Comparison of recent results and (Nguyen et al., 2018) 

 

Figure 6 Distribution of analysed papers by SC function (A) and comparison to previous study (B) 

 

Figure 6: Distribution of analysed papers amongst SC 

function in a pie chart on the left side and a bar charts-based 

comparison of our results with the previous paper from 

Nguyen et al. (2018) 

As illustrated in Figure 7, production planning & 

control (56 papers) and quality management (38 papers) in 

the manufacturing function, logistics planning (31 papers) in 

the logistics/transportation function and demand forecasting 

(34 papers) in the demand management function were the 

most focused areas for researchers in recent years. In the 

field of warehousing, inventory control (20 papers) and in 

the field of procurement, supplier selection and sourcing risk 

management (6 papers for each) are the most repeated topics 

recently. 
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Figure 7 Comparison of article distribution by SC function and activity between recent study and (Nguyen et al., 2018) 

 

Figure 7: Figure showing several bar charts comparing 

the number of analysed papers in the different SCMs 

functions in the current and the past SLR by Nguyen et al. 

(2018). 

There are 43 papers which are not dealing with a 

specific SC function. These papers have been categorized 

under the group of “general SCM” and focus on different 

areas. Due to the significant increase in the number of papers 

within this field in recent years (cf. Figure 8) and for a more 

detailed analysis, we have broken down this general category 

into 7 sub-catgories. Based on this categorization, more than 

half of the articles within the “general SCM” function are in 

the area of risk management (12 papers) and sustainable 

supply chain management (11 papers). 

 

 
Figure 8 Distribution of analysed papers with “General SCM” function by Analytic categories 

 

 

Figure 8: Figure showing the distribution of topics in 

the field of general SCM. The top three sub-categories 

include risk management, sustainable SCM and performance 

management. 

 

3.2 Review Results by Level of Analytics 
Figure 9 provides an overview of latest trends across 

the three analytics levels in publications compared to 

previous years. In contrast to the previous study, which 

depicted the dominance of prescriptive analytics, the current 

literature review identifies an increased focus on predictive 

analytics, becoming the most common analytics type applied 

in the analysed articles. All three levels of analytics 

experienced a significant increase compared to the previous 

study, however, for descriptive analytics, a decrease in 2021 

compared to 2020 could be shown. 
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Figure 9 Number of papers by year and level of analytics 

 

Figure 9: A trendline showing the development 

relevant papers in the three levels of descriptive, predictive, 

and prescriptive analytics. 

Next, the share of SC functions in each analytics type 

is provided in Figure 10. The results show that - apart from 

general SCM - solving manufacturing issues is the most 

popular topic at all analytics levels. For descriptive analytics, 

the second most specific SC function after manufacturing is 

logistics, followed by demand management. For predictive 

analytics, the second most popular topic is demand 

management, followed by logistics. For prescriptive 

analytics, the second most dealt with application area is 

logistics, followed by warehousing (besides general SCM). 

 

 

 
Figure 10 Distribution of papers by SC functions and level of analytics 

 

Figure 10: Three stacked bar-charts – one per levels of 

analytics - showing the numbers of papers in the different SC 

functions. 

 

3.3  Review Results by Type of DA Model 
Figure 11 depicts the distribution of papers based on 

DA models applied in Nguyen et al. (2018) and in 

comparison to the current study. Same as previous study, 

most articles applied optimization models (92 out of 354, 

26%). Their share has slightly increased in recent 

publications compared to the analysis of Nguyen et al. 

(2018). Popular route and location optimization models have 

been widely used in this context to support decision makers 

in solving supply chain issues. The next popular model 

categories are mixed or hybrid models (19%) and forecasting 

approaches (19%). As visualized in Figure 12, these models 

are mostly used for manufacturing and demand management 

issues. Next is classification models (16%), which are mostly 

applied in solving manufacturing and warehousing 

problems. 

For simulation, association, regression, and semantic 

analysis, we noticed a downturn compared to the past. 

Clustering models are the next most repeated model type in 

the current analysis. Manufacturing and demand 

management represent the dominating SC functions for such 

models. 
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Figure 11 Compression of past and recent distribution of papers by model 

 

 

 
Figure 12 Distribution of papers by SC functions and models 

 

Figure 11: Horizontal bar-charts comparing the 

number of papers dealing with the different DA models in 

the current and past SLR. 

Figure 12: Several stacked bar-charts – one per DA 

model type - showing the numbers of papers in the different 

SC functions. 

As mentioned, hybrid, mixed or other types of 

approaches that use more than one DA model are widely 

used in recent publications. 19% of recently published papers 

in the scope of our analysis apply a combination of more than 

one model to address SCM issues. Hence, it is worthy taking 

a closer look at these. Table 3 and Figure 13 provide an 

overview of the distribution of papers applying model 

combinations by analytics level and specific DA models 

used. For instance, as indicated in Table 3, 11 papers in the 

area of prescriptive analytics employed a mixed/hybrid 

approach, incorporating both classification and optimization 

models. Out of 69 articles, 40 (58%) are in the context of 

prescriptive analytics, 24 (34%) focus on predictive analytics 

and the rest (5 papers) is related to descriptive analytics. 

Classification (24%), optimization (22%) forecasting (18%) 

and clustering (15%) respectively are the most repeated 

models. To put it another way, DA models that seemed to be 

fading out when comparing recent publications to past 

applications are now combined and empowered with other 

models in the form of hybrid and mixed approaches. 
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Table 3 Distribution of papers with mixed/hybrid/others models by analytics level and DA models 

Number of articles 
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Descriptive Predictive Prescriptive 

0 0 11  *   *     

0 6 0  *  *      

0 0 6    * *     

0 0 5   *  *     

1 2 1  * *       

0 3 0  * * *      

0 3 0  *  *  *    

0 2 1    *  *    

0 3 0   * *      

0 0 2 *    *     

0 0 2  *   * *    

1 0 1 *  *       

0 1 1  *     *   

0 0 2     * *    

0 2 0  *    *    

0 1 0 *   *      

0 0 1   * * *     

0 0 1     *   *  

1 0 0   *    *   

1 0 0  * *    *   

0 0 1    *   *   

0 0 1 * * *  *     

0 1 0 *       *  

1 0 0   *      * 

0 0 1     *  *   

0 0 1 *  *     *  

0 0 1  *   *  *   

0 0 1        *  

 
Figure 13 Frequency of individual models in hybrid or mixed 

model approaches 
 

Figure 13: A bar-charts showing the numbers of 

different model types applied in hybrid or mixed model 

approaches. The top three include classification, 

optimization and forecasting approaches. 

 

3.4 Review Results by DA Techniques 
Table 4 and Figure 14 provide a detailed overview of 

most repeated DA techniques and models. Mixed or hybrid 

techniques are the most repeated approaches in recent 

publications (139 papers). After that, statistics/heuristic 

approaches are the most popular techniques (49 papers), 

which are mostly applied in optimization models. Similarly, 

neural networks in forecasting (24 papers), reinforcement 

learning in optimization (15) and decision trees in 

classification models (14 papers) prevail. Unlike the 

previous study, association rule mining (ARM), support 

vector machines (SVM), and sentiment analysis are less 

discussed in recent literature while approaches such as 

metaheuristic and mixed techniques are addressed more 

frequently. We have categorized techniques that are used 

only once in the papers as others. 
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Table 4 Distribution of papers by DA techniques and models 
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Mixed 1 19 1 25 69 21   3  139 

Statistics/heuristic  1 1 6  33 3 1 3 1 49 

Neural network  6  24  10  1 2  43 

Reinforcement learning    1  15   4  20 

Decision tree  14  2       16 

Other clustering algorithms   14     1   15 

Visualization          11 11 

Linear regression    3   6    9 

Metaheuristic approach    1  7     8 

Other classifications  7         7 

Support vector machines  4  2       6 

Decision making  2    4     6 

Other  2  2  2     6 

Association rule mining 5          5 

K-means clustering   4        4 

Text mining   1 1    2   4 

Annomaly detection  1  1       2 

Naïve bayes  1  1       2 

Sentiment analysis        2   2 

To conduct a more detailed analysis of mixed or hybrid 

techniques, we have provided a closer look at the individual 

techniques used in these approaches. As shown in the figure, 

statistics/heuristics, neural networks, and support vector 

machine techniques are the most frequently used in 

mixed/hybrid approaches, which have been enhanced by 

combining them with other techniques in recent publications. 

 

 

 
Figure 14 Frequency of individual techniques in hybrid or mixed technique approaches 

3.5  Review Results by Industry 
In Table 5, the distribution of articles in each industry 

of the standard industrial classification (SIC) framework as 

well as the corresponding level of analytics is provided. As 

shown, manufacturing problems prevail in literature. After 

that,  “transportation, communications, electric, gas and 

sanitary service” and “retail trade” are the most focused 

industries. Predictive analytics is mostly applied in 

manufacturing and retail trade industries for failure and 

demand forecasting, respectively. Descriptive and 

prescriptive analytics are more applied for DA use cases in 

manufacturing and transportation industries. 
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Table 5 Distribution of papers by industry and level of analytics 

Industry Descriptive Predictive Prescriptive Total 

Manufacturing 22 85 70 177 

Transportation, Communications, Electric, Gas and Sanitary service 11 20 36 67 

Retail trade 6 29 17 52 

Nonclassifiable 2 14 12 28 

Services 2 3 5 10 

Finance, Insurance and Real Estate 1 2 4 7 

Agriculture, Forestry and Fishing 2 2 2 6 

Mining  1 2 3 

Wholesale trade  2  2 

Sanitary service   1 1 

4. RESULTS AND DISCUSSION 
In this section, a discussion of the main changes in each 

SC function and activity as well as on the analytics type, the 

DA model and the DA techniques level is provided by 

comparing the results and the selected papers of our literature 

review with those of the reference study provided by Nguyen 

et al. (2018). 

 

4.1 In What Areas of SCM is DA being Applied? 
The distribution of recent papers in different fields of 

the manufacturing area has not changed significantly. 

Manufacturing area in recent years is still amongst the most 

impacted fields by advances of DA and digital 

transformation, which resulted in huge expansion of data 

availability (Tamás & Koltai, 2020). Production planning 

and control are the dominant topics for applying DA in this 

context (Lucht et al., 2021). The results of the current 

literature review are in line with the previous one and we also 

confirmed that most papers in the manufacturing area 

address production planning and control issues. Quality 

management is the next frequent topic in the manufacturing 

area which has been more discussed in manufacturing 

literature. High quality products or services are vital and 

desired by both customers and companies. While quality 

management was often performed by humans in the past, 

nowadays DA and machine learning techniques can be 

employed in solving many quality management tasks (San-

Payo et al., 2020). Increasingly, the generation of data and 

information because of implementation of internet of things 

(IoT) and particularly radio frequency identification (RFID) 

technologies have enabled companies to implement real-

time traceability of their production systems (Feng et al., 

2018; Sánchez et al., 2020). This leads manufacturing areas 

into implementing DA for empowering early detection 

systems and increase their responsiveness to disruptions 

(Eirinakis et al., 2021). However, selecting appropriate data 

and applying machine learning techniques in real-time 

maintenance and diagnostics field is a challenging issue 

discussed in a plethora of articles (Feng et al., 2018; Yifu Li 

et al., 2021). 

Although in the previous study the dominant topic in 

the field of logistics and transportation were intelligent 

transportation systems (ITS), in recent years, logistics 

planning has gained slightly more prominence. Routing 

optimization (Dimokas et al., 2020; Y. Zhang et al., 2020; 

Chen, 2020; Han et al., 2021; Wiegmans et al., 2020) and 

traffic monitoring (Ibrahim et al., 2020; Hwang, 2021; 

George & Santra, 2020; Y.-T. Chen et al., 2021) prevail in 

the ITS domain. In addition, process traceability (Yineng 

Chen et al., 2021; Harrison et al., 2020) is a newly emerged 

topic in literature in this context. Applying DA techniques in 

logistics planning is more practical todays. Location-

allocation optimization (Cheng & Pan, 2021), reverse 

logistics planning (Govindan & Gholizadeh, 2021; Ahmadi 

et al., 2020), production logistics scheduling (Yue et al., 

2021), smart logistics planning (Liang & Wang, 2021), 

improved transport prediction models (Monteil et al., 2021; 

Balster et al., 2020; Hathikal et al., 2020; Moscoso-López et 

al., 2021) and sustainability focused planning (Mangina et 

al., 2020; Vorkapić et al., 2021) are amongst the most 

repeated topics. 

Demand management is a topic of growing interest 

recently. Forecasting daily demand of products in the retail 

sector (Amalnick et al., 2019; Spiliotis et al., 2020; 

Abolghasemi et al., 2020; Lalou et al., 2020; Massaro et al., 

2021), predicting potential customer demand (Wang et al., 

2020) or newly launched products (Kharfan et al., 2021) are 

amongst the most repeated topic in “demand forecasting” 

area. Moreover, there are lots of contributions in context of 

demand shaping (Safara, 2020; Verma et al., 2020; Lam et 

al., 2021; J.-S. Song & Xue, 2021; Kalinin et al., 2020) and 

demand sensing (Sathyan et al., 2021; Grzybowska et al., 

2020; Jain & Kumar, 2020; Taghikhah et al., 2021; Türk et 

al., 2021; Shokouhyar et al., 2021) in recent publications. 

Benefiting from DA in warehousing operations is not 

as frequent as manufacturing and logistics in literature. 

Though, the popularity of this issue in recent years has 

decreased by half. However still, expansion of data 

availability and uncertainty draws researchers’ attention 

towards application of big data (BD) and machine learning 

to improve decision making in the field of warehousing and 

stock management (Luchko et al., 2019; Galli et al., 2020). 

In this area, the focused field is inventory control (Hajek & 

Abedin, 2020), which is the most repeated problem both in 

past and current literature review. Compared to the previous 

study, real-time DA and process and inventory monitoring in 
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smart warehouses (Arumsari & Aamer, 2021) as well as 

more advanced classification and optimization methods with 

heuristic approaches have more been applied in smart retail, 

drug and perishable products segments (Wang et al., 2021; 

Ahmadi et al., 2020; Galli et al., 2020). Order picking is an 

undeniable part of warehousing specially in distribution 

centers (DC) (Yue Li et al., 2021) as improving in this sector 

can reduce logistics costs (Granillo-Macías, 2020). 

Increasing the efficiency of order picking activities by 

optimizing storage location is popular in recent papers (Zhou 

et al., 2020; Yue Li et al., 2021). 

Regarding DA applications in the procurement area, 

recent publications showed increased applications in risk 

management and supplier selection. Benefiting from 

predictive and prescriptive analytics to improve supplier risk 

management has become a more mature topic compared to 

the past. Outsourcing and dealing with uncertain demand 

information (Niu et al., 2021) and predicting supply 

disruptions (Brintrup et al., 2020) are amongst the most 

repeated topics in this field. In the area of supplier selection, 

nowadays environmental concerns in companies have 

increased and as a result, sustainable supplier selection has 

been widely adopted in literature (Alavi et al., 2021; Liou et 

al., 2021). Moreover, same as in the previous study, ML 

methods have been utilized to improve the speed and 

reliability of supplier selection (Wilson et al., 2020 Islam et 

al., 2021) as well as improving SC visibility (J. Liu et al., 

2020). 

The last part is dedicated to general SCM, related to the 

whole SC or a combination of several activities. As 

mentioned before, this area has attracted researchers’ 

attention and new issues have been addressed in the selected 

articles. In addition to the former topics of risk management 

(Kara et al., 2020; Melançon et al., 2021; Dai & Liu, 2020; 

Salamai et al., 2021; Jing Wu et al., 2022), sustainability and 

green supply chain (Gholizadeh et al., 2020; D. Ma et al., 

2021; Wong et al., 2021; Abdella et al., 2020; Goodarzian et 

al., 2021; Moghimi & Beheshtinia, 2021; Nagendra et al., 

2020; Kuo et al., 2021; Park, 2021), and performance 

management (Jiang et al. 2021b; Chakraborty and Das, 2021; 

Li et al. 2020c; Lunardi and Lima Junior, 2021; Abdelsamad 

et al., 2021). Supply chain collaboration and integration (Ali 

et al., 2021a; Gumte et al., 2021; Guillermo Muñoz et al., 

2020; Xiang, 2020), supply chain network design (Zhou and 

Guo, 2021; Yang et al., 2021d) and transparency and 

traceability (Wong et al., 2021; Ping Zhang et al., 2021; 

Khan et al., 2020) have been discussed in recent DA 

publications. 

 

4.2 At What Level of Analytics is DA Used in 

These SCM Areas? 
As mentioned earlier, the distribution of predictive and 

prescriptive analytics has fluctuated widely over the years. 

In the early years of the emergence of DA, predictive 

analytics was superior to prescriptive analytics, though from 

2015 onwards, articles in the field of prescriptive analytics 

prevailed. Then again, predictive analytics has been the most 

frequent approach of 2020 and 2021 articles. 

In terms of application of each analytical level in SC 

areas, the results are close to the previous analysis of 

(Nguyen et al., 2018), however, in that study “logistics/ 

transportation” was dominant in the prescriptive analytics. In 

recent years “manufacturing” received more attention. In 

addition, “Demand management” has attracted considerable 

attention in all analytics level. In contrast, “Warehousing” 

seems to be disappearing in predictive analytics. Moreover, 

previously, all SC areas were discussed almost uniformly in 

descriptive analytics papers (between 2 to 4 papers), while 

now the distribution is more diversified. To exemplify, 

“procurement” issues are less discussed with descriptive 

analytics and more addressed with optimization and 

prediction. Though, newly emerged problems in other SC 

topics are widely noticed in descriptive analytics. 

 

4.3 What Types of DA Models are Used in SCM? 
As provided in Figure 11, optimization methods 

prevail in our selected papers of application of DA in SCM. 

Same as before, manufacturing and logistics and 

transportation are the most focused areas in this context. 

However, as stated by Nguyen et al. (2018), smart logistics 

and warehousing solutions for routing or location 

optimization, also based on real-time data, have become 

more mature recently. Especially against the background of 

Industry 4.0, the application of real-time DA to enable timely 

decisions in SCM represent an area of growing importance 

in research and practice (Ahmad & Sanjog, 2023). Digital 

transformation and intelligent systems enabled sustainable 

developments in different fields of SCM (Ma et al., 2020). 

Therefore, optimizing sustainability and energy 

consumption is another issue that has attracted the attention 

of researchers in recent years. 

The second most repeated approaches are hybrid or 

mixed methods as well as forecasting. Hybrid or mixed 

methods are mostly applied in prescriptive analytics, 

especially in manufacturing and demand management. 

Semantic analysis, association and other methods that used 

to be common in literature previously, are now mostly 

combined or mixed with other models to build more 

advanced DA models and improve reliability and accuracy 

analysis. For forecasting models, the main applications are 

predicting customer demand (Abolghasemi et al., 2020; 

Lalou et al., 2020; Spiliotis et al., 2020), in demand 

management or early detection (Malawade et al., 2021; Li et 

al., 2020a) or in resource consumption in the manufacturing 

area (Ribeiro et al., 2020; Tong et al., 2021). Such methods 

have also been applied in flow time prediction in the field of 

logistics especially perishable products transportation 

(Moscoso-López et al., 2021). 

Despite the frequency of semantic analysis and 

association models in previous study, classification 

approaches are the fourth most common element in the 

current literature review. It has been applied mostly on 

predictive analytics and specially manufacturing problems. 

Though, current directions of articles are now in the area of 

quality management as well as failure detection and 

prediction (Jun et al., 2020; Niccolai et al., 2021; Niccolai et 

al., 2021; Frumosu et al., 2020). In the field of logistics and 

transportation, classification methods have been applied to 

deal with lead time and delay prediction (Zanin et al., 2020; 

Hathikal et al., 2020). Also, such approaches have been used 

to categorize products and predict new product demand (van 

Steenbergen & Mes, 2020). 

Finally, clustering models have been applied in more 

than 6% of selected papers. They are more frequent in 
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descriptive and predictive analytics and less common in 

prescriptive modeling. Cluster based approaches were 

mostly noticed in manufacturing area for quality 

management and production planning and control. They 

have little insight in sustainability (Abdella et al., 2020) and 

risk management (Kara et al., 2020) problems in general 

SCM. 

4.4 What are DA Techniques Employed to 

Develop These Models? 
In addition to the prevalent mixed/hybrid techniques 

found in most approaches, like what was mentioned 

previously, certain techniques take precedence in specific 

models. For instance, neural networks are frequently 

employed in forecasting, while tree-based techniques are 

predominant in classification models. In contrast to prior 

literature reviews on optimization models, alongside 

heuristics and statistical approaches, reinforcement learning 

methods have become increasingly common. 

Due to diversity of BD, in recent articles, the tendency 

towards mixing or combining different techniques to solve 

SCM issues has increased. Some former common methods 

that are not prevalent in the new study have been mixed with 

other techniques. For example, association rule mining used 

to be widely adopted in descriptive and predictive analytics. 

However, in the current study, often prescriptive analytics 

have been improved by combining ARM with other 

techniques, especially clustering and statistics/heuristic 

approaches (Yue Li et al., 2021; Mangina et al., 2020; Feng 

et al., 2018; Kappelman & Sinha, 2021; Bilgic et al., 2021; 

Zhou et al., 2020). Same status is recorded for SVM 

technique. This method is mostly applied as a single 

classification approach in recent literature, though it has been 

widely combined with neural networks (Safara, 2020; 

Kharfan et al., 2021; Kuo et al., 2021), regression (Ismail et 

al., 2021; Taghikhah et al., 2021), clustering (Rousopoulou 

et al., 2020; Vijayaragavan et al., 2020) and other techniques 

to improve predictive and prescriptive analyses. 

The evolution from traditional models to hybrid and 

mixed DA models represents a leap in operational efficiency 

and decision-making accuracy. Hybrid models, integrating 

both qualitative and quantitative data, offer a more holistic 

approach to SCM problems. For instance, a study by Min et 

al. (2021) demonstrated that hybrid models incorporating 

machine learning algorithms with traditional forecasting 

methods significantly improved demand prediction accuracy 

compared to conventional models alone. Furthermore, mixed 

DA models, which blend various analytical techniques, have 

shown considerable promise. Research by Kumar and Singh 

(2022) revealed that mixed models, combining predictive 

analytics with real-time data processing, enhanced supply 

chain responsiveness and reduced costs by up to 20%. These 

advancements underscore the practical implications for SCM 

professionals: by embracing these innovative approaches, 

they can achieve a more robust, agile, and data-driven supply 

chain, leading to improved operational performance and 

competitive advantage. Such a transition, however, requires 

an upskilling of the workforce and investment in new 

technologies, as emphasized by Lee and Kang (2023), to 

fully exploit the potential of these advanced analytical 

models in SCM. 

5. FUTURE RESEARCH 

DIRECTIONS 
Nguyen et al. (2018) put forth a range of potential 

research paths for future studies. Several of these have since 

been explored in recent publications, including the extension 

of research into the application of data analytics (DA) in 

areas like reverse logistics, quality control, and demand 

forecasting within the supply chain. Nonetheless, certain 

research gaps identified by Nguyen et al. (2018) remain 

unaddressed. Moreover, the current paper's findings 

introduce several fresh and inventive opportunities for future 

research that bridges the realms of data analytics and supply 

chain management (SCM). Consequently, this paper outlines 

six illustrative directions for future research in this domain. 

 

5.1 Further Research on DA Applications in 

Specific SC Functions 
Although the application of DA has significantly 

increased across most SC functions, there are still 

considerably limited areas like in-transit inventory 

management, order picking, demand shaping and 

procurement. Similar results of previous research also state a 

high benefit of DA in these areas and confirm the need for 

additional studies (I. Lee & Mangalaraj, 2022; Raut et al., 

2021). Future research could focus on these still little 

researched areas and contribute new knowledge and 

application results to these SC functions. Especially in the 

context of sourcing cost improvement, sourcing risk 

management, supplier selection, order picking and storage 

assignment the amount application studies is low. Further 

areas that have already been dealt with but could also benefit 

from additional application-oriented studies include product 

R&D and demand shaping. 

 

5.2 Focusing on Cross-functional and Internally 

Aligned DA in SCM 
Investigating cross functional issues in SCM and 

adaption of DA in integrated SC functions is another 

research gap identified by (Nguyen et al., 2018). 

Unfortunately, also the current literature review for 2020 and 

2021 did only reveal few articles considering cross 

functional activities in SC. It still seems to be the dominant 

practice to conduct DA projects on the level of single SC 

functions. This results was also confirmed in recent 

literature, which also identified missing knowledge and data 

sharing along the company-internal SC as the source for silo-

based DA application in SCM (Brandtner, Udokwu et al., 

2021a). Future research in this regard should especially focus 

on company-internal SC and their cross-linking within and 

outside the organization. Fostering internal transparency and 

enabling DA that is linked throughout the organization 

represents a promising research field. Especially against the 

background of organisational silos and difficulties in 

establishing transparency with indirect suppliers and 

customer (i.e., tier-2 and above), internally aligned DA 

initiatives could provide significant benefits without the need 

for gathering new data from company external sources. Their 

focus would hence rather be on data and knowledge 

identification and data exploitation. 
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5.3 Combining Different DA Models across DA 

Levels 
In terms of analytics level of the analyzed studies, we 

have noticed a close share of predictive and prescriptive 

analytics in publications, while descriptive and diagnostic 

analytics are still neglected in many cases. This is in line with 

current research (I. Lee & Mangalaraj, 2022). More 

precisely, predictive analytics prevails in current literature, 

especially to forecast customer demand, production failures 

or transportation delay. Partial reasons for a reduction in 

descriptive and diagnostic analytics might be due to the fact, 

that they are often part of predictive and prescriptive 

analytics. Still, we deem it important to further analyze the 

potential of descriptive and diagnostic approaches in SCM to 

extract important factors and features from the data. Related 

to the stages of a DA project, it might especially be useful 

for the earlier tasks of business and data understanding 

(Brandtner, Udokwu et al., 2021b). Future research might 

especially focus on the combination of different DA models 

across the levels of descriptive, predictive, and prescriptive 

analytics, as e.g. done in (Amellal et al. 2023), where CNN 

and LSTM models were combined. This need has also 

already been stated by Nguyen et al. (2018) as a foreseen 

perspective. 

 

5.4 Enabling Real-time DA in SCM 
Cloud systems and intelligent information systems 

have provided the opportunity of accessing huge amounts of 

data. Many researchers have investigated methods of how to 

deal with big data and extract knowledge and information so 

far (Ghahramani et al., 2020), (Feldkamp et al., 2020). 

However, selecting, processing, monitoring, and applying 

DA models on real-time data is still a challenging issue in 

SCM. It can be beneficial for future studies to provide real-

time analysis with applying streaming data in their DA 

models in smart SC, especially for routing and allocation as 

well as for sustainability problems (Oleghe, 2020). This 

research gap is also identified in current literature, which also 

emphasizes the need for real-time, cloud-based data sharing 

and storage as well as respective DA models to enable real-

time DA in SCM (Udokwu et al., 2022). 

 

5.5 Applying DA in SC Uncertainty Reduction 
The appearance of the COVID-19 pandemic as one of 

the biggest disruptive events in the last two years (Brandtner, 

Darbanian et al., 2021), has an overlap with the timespan of 

our literature review. The pandemic has encouraged many 

researchers to exploit the advantages of DA models on SC 

resilience problems. Therefore, improving the reliability of 

DA models with stochastic approaches to overcome SC 

uncertainties is another potential topic for future studies. Our 

results in this context are in line with other current literature, 

which also states that the application of DA in SC risk 

management and SC uncertainty reduction is still in its 

infancy (Brandtner, 2023). Future research in SCM could 

also try to build on existing application knowledge in the 

context of reducing strategic uncertainty in innovation 

management and strategic foresight (Brandtner & Mates, 

2021; Capurro et al., 2021; Pietronudo et al., 2022). 

Promising research has already investigated the application 

of stochastic models to SC uncertainty reduction and SC 

resilience, still, the need for further research is also stated in 

current literature (Sawik, 2022). 

 

5.6 Consideration of Publicly Available Data 
Considering additional internal factors such as pricing 

and promotional activities has proven to enhance prediction 

accuracy, a practice that has gained widespread acceptance 

in recent academic literature. Nevertheless, there remains a 

promising avenue for future research, as highlighted by Song 

et al. (2021), which involves identifying influential elements 

within publicly accessible data and incorporating them into 

predictive models.  

Prior research has already ventured into this territory, 

with studies focusing on the collection and analysis of 

publicly available data, such as web reviews, to assess the 

impact of factors like COVID-19 on retail supply chains 

(Brandtner et al., 2021; Udokwu et al., 2020). Consequently, 

an exciting and expansive prospect for future research at the 

intersection of data analytics (DA) and supply chain 

management (SCM) lies in the methodical and structured 

integration of publicly accessible data into the domain of 

supply chain analytics. This observation aligns with the 

current literature on artificial intelligence in SCM, which 

underscores the significance of publicly available data in 

making informed supply chain decisions (Bechtsis et al., 

2022). 

A potential application lies in connection with the 

forthcoming supply chain due diligence directive. 

Classification and clustering models could be employed to 

identify patterns of unethical practices, for instance, at the 

level of source countries, suppliers, or categories of raw 

materials, and assess the acceptability of future network 

partners. Data for this purpose could be collected, 

particularly through web and social media scraping or text 

mining, or derived from investment baskets, and linked with 

internal data. This would enable companies to act with 

confidence and prepare for compliance with the supply chain 

law. 

6. CONCLUSION AND 

LIMITATIONS 
Utilizing the qualitative content analysis approach 

introduced by Mayring (2022) and building upon the 

groundwork established in the previous study by Nguyen et 

al. (2018), this paper conducted a comprehensive 

examination of 354 papers through a systematic literature 

review. By comparing our findings with prior literature, we 

gained valuable insights into recent applications of data 

analytics (DA) in supply chain management (SCM), 

facilitating an in-depth discussion of research trends and 

developments spanning the past decade. Our analysis, 

spanning six SCM functions and 17 sub-activities, revealed 

a significant upsurge in the importance of DA in SCM. 

Across all three types of analytics—descriptive, predictive, 

and prescriptive—there was a noticeable increase in 

application-oriented articles, particularly within the realm of 

predictive analytics. 

It's essential to acknowledge the potential limitations of 

this study. One such limitation is the subjectivity inherent in 

authors' categorization within the applied classification 

framework. While the QCA approach by Mayring ensures a 

degree of objectivity, subjectivity bias remains a possible 
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constraint. Another limitation lies in the selected time frame, 

which covers the years 2020 and 2021. Given that the 

reference study encompassed the period between 2011 and 

2016, no data was available for the years 2017-2019, 

necessitating interpolation. Nevertheless, the ample number 

of articles analyzed in this study (354) compared to the 

smaller dataset of Nguyen et al. (88) affords a broad scope 

for deriving meaningful insights. 

The practical contributions of this paper are manifested 

in the form of an overview of SCM tasks, sub-activities, and 

applicable DA models and techniques. For practitioners 

seeking to implement DA within their organizations, this 

paper offers valuable starting points and references to 

expedite the specification of use cases and model 

requirements. In terms of theoretical contributions, our paper 

furnishes a comprehensive overview of recent application 

studies at the intersection of DA and SCM. Furthermore, it 

provides a springboard for future research, offering detailed 

exploration of six exemplary research directions. These 

directions span various aspects, from the necessity for 

research within specific SCM functions, such as 

procurement, to the facilitation of real-time DA and the 

integration of DA to mitigate uncertainty in SCM. 
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